PlusPedia wird derzeit technisch modernisiert. Aktuell laufen Wartungsarbeiten. Für etwaige Unannehmlichkeiten bitten wir um Entschuldigung; es sind aber alle Artikel zugänglich und Sie können PlusPedia genauso nutzen wie immer.

Neue User bitte dringend diese Hinweise lesen:

Anmeldung - E-Mail-Adresse Neue Benutzer benötigen ab sofort eine gültige Email-Adresse. Wenn keine Email ankommt, meldet Euch bitte unter NewU25@PlusPedia.de.

Hinweis zur Passwortsicherheit:
Bitte nutzen Sie Ihr PlusPedia-Passwort nur bei PlusPedia.
Wenn Sie Ihr PlusPedia-Passwort andernorts nutzen, ändern Sie es bitte DORT bis unsere Modernisierung abgeschlossen ist.
Überall wo es sensibel, sollte man generell immer unterschiedliche Passworte verwenden! Das gilt hier und im gesamten Internet.
Aus Gründen der Sicherheit (PlusPedia hatte bis 24.07.2025 kein SSL | https://)

Bei PlusPedia sind Sie sicher: – Wir verarbeiten keine personenbezogenen Daten, erlauben umfassend anonyme Mitarbeit und erfüllen die Datenschutz-Grundverordnung (DSGVO) vollumfänglich. Es haftet der Vorsitzende des Trägervereins.

PlusPedia blüht wieder auf als freundliches deutsches Lexikon.
Wir haben auf die neue Version 1.43.3 aktualisiert.
Wir haben SSL aktiviert.
Hier geht es zu den aktuellen Aktuelle Ereignissen

Ableitung

Aus PlusPedia
Version vom 11. Februar 2025, 00:15 Uhr von Fmrauch (Diskussion | Beiträge) ({{Begriffsklärung}})
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen
Fehler beim Erstellen des Vorschaubildes: Datei fehlt Der Titel dieses Artikels ist mehrdeutig. Weitere Bedeutungen sind unter Ableitung (Begriffsklärung) aufgeführt.

Ableitung ist eine Methode in der Differentialrechnung. Hierbei werden die Steigungen von Punkten einer Funktionskurve im Koordinatensystem ermittelt.

Es wird dann geschrieben: y' = dy/dx (der Differntialquotient) = ...

Beispiel: Gesucht wird die erste Ableitung der Gleichung y = 2x3 + 4 y' = 6x2. Das Rechenverfahren: Der Exponent 3 wird mit dem Koeffizienten 2 multipliziert und reduziert sich um 1, die allein stehende Ziffer oder Zahl (der Absolutbetrag, hier 4) fällt weg.

Anwendung aus der Physik: Bewegung mit Beschleunigung: s = 1/2a . t2 (s = Weg, a = Beschleunigung, t = Zeit) => s' = v Mom = a . t (vMom = Momentangeschwindigkeit, ein Punkt der Kurve im Weg-Zeit-Diagramm, an den die Steigungs-Tangente gelegt wird).

In der Kurvendiskussion wird auch mit zweiten (y") und dritten (y'") Ableitung gearbeitet. Die mit einer Ableitung entstehende neue Funktion hat meist um einen Grad niedrigere Exponenten. Das Gegenstück zur Ableitung ist das Integral.

Literatur

  • Lambacher/Schweizer: Analysis