PlusPedia wird derzeit technisch modernisiert. Aktuell laufen Wartungsarbeiten. Für etwaige Unannehmlichkeiten bitten wir um Entschuldigung; es sind aber alle Artikel zugänglich und Sie können PlusPedia genauso nutzen wie immer.

Neue User bitte dringend diese Hinweise lesen:

Anmeldung - E-Mail-Adresse Neue Benutzer benötigen ab sofort eine gültige Email-Adresse. Wenn keine Email ankommt, meldet Euch bitte unter NewU25@PlusPedia.de.

Hinweis zur Passwortsicherheit:
Bitte nutzen Sie Ihr PlusPedia-Passwort nur bei PlusPedia.
Wenn Sie Ihr PlusPedia-Passwort andernorts nutzen, ändern Sie es bitte DORT bis unsere Modernisierung abgeschlossen ist.
Überall wo es sensibel, sollte man generell immer unterschiedliche Passworte verwenden! Das gilt hier und im gesamten Internet.
Aus Gründen der Sicherheit (PlusPedia hatte bis 24.07.2025 kein SSL | https://)

Bei PlusPedia sind Sie sicher: – Wir verarbeiten keine personenbezogenen Daten, erlauben umfassend anonyme Mitarbeit und erfüllen die Datenschutz-Grundverordnung (DSGVO) vollumfänglich. Es haftet der Vorsitzende des Trägervereins.

PlusPedia blüht wieder auf als freundliches deutsches Lexikon.
Wir haben auf die neue Version 1.43.3 aktualisiert.
Wir haben SSL aktiviert.
Hier geht es zu den aktuellen Aktuelle Ereignissen

Transformator (Wirkungsweise und Physik): Unterschied zwischen den Versionen

Aus PlusPedia
Zur Navigation springen Zur Suche springen
Init
 
Fmrauch (Diskussion | Beiträge)
 
(58 dazwischenliegende Versionen von 5 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{Inuse}}


 
Ein '''[[Transformator]]''' kann unterschiedlich eingesetzt werden. Dabei ist die '''[[Wirkung]]sweise''' durch die '''[[physik]]alischen''' Gesetze der [[ Elektrizität]] je nach Verwendung unterschiedlich. Er kann primärseitig mit [[Wechselstrom|Wechselspannung]] beliebiger Kurvenform und – bei geeigneter Dimensionierung in [[Schaltregler]]n – kurzzeitig sogar mit [[Gleichspannung]] betrieben werden. Sekundärseitig können erhebliche Abweichungen der Kurvenform auftreten. Nachfolgend werden die unterschiedlichen Wirkungen, auch in Abhängigkeit von der [[Frequenz]] dargestellt.  
Ein '''[[Transformator]]''' kann primärseitig mit Wechselspannung beliebiger Kurvenform und – bei geeigneter Dimensionierung in [[Schaltregler]]n – kurzzeitig sogar Gleichspannung betrieben werden. Sekundärseitig können erhebliche Abweichungen der Kurvenform auftreten. Nachfolgend werden die Begründungen und Bemessungsgrundlagen für hohe und tiefe Frequenzen dargestellt.  
[[Datei:Trafo 1.png|miniatur|Transformator mit physikalischen Bezeichnungen und Symbolen]]
[[Datei:Trafo 1.png|miniatur|Abwärtstransformator mit physikalischen Symbolen]]
[[Datei:symm2.jpg|miniatur|Symmetriertrafo, Impedanzwandler in einer Antennenleitung 60 Ω / 240 Ω für den Frequenzbereich 50…250 MHz mit Ferrit-Doppellochkern]]


== Primär- und Sekundärwicklung ==
== Primär- und Sekundärwicklung ==
[[Datei:Trafo.gif|thumb|500px|Prinzip eines zweischenkligen Trafos]]
Die Primärwicklung eines Trafos mit ''N''<sub>primär</sub> Windungen und der Länge ''l'' wird vom Primärstrom ''I''<sub>primär</sub> durchflossen, wodurch ein [[Magnetfeld]] erzeugt wird, das im Inneren der Spule besonders stark ist. Dieses wird bestimmt durch μ<sub>0</sub> (die [[Magnetische Feldkonstante]]) und μ<sub>r</sub> (die [[Permeabilität]]) des Spulenkerns. Wenn sich dieses Magnetfeld ''nicht'' ändert, wird auch die [[elektrische Spannung|Spannung]] nicht verändert. Wenn es sich ändert, wird in einer oder mehreren Sekundärspule(n) ebenso wie in der Primärspule eine Wechselspannung erzeugt, die proportional zur Windungszahl steigt. Die Kurvenform der Sekundärspannung kann dabei von der Kurvenform der Primärspannung erheblich abweichen.


[[Datei:Trafo.gif|miniatur|Prinzip eines zweischenkligen Trafos]]
Es gibt unterschiedliche Möglichkeiten, elektrische Spannung durch [[Elektromagnetische Induktion]] zu erzeugen. Für den Betrag der induzierten Spannung kommt es ''nur'' darauf an, wie ''schnell'' sich ''I<sub>p</sub>'' ändert.  
Die Primärwicklung eines Trafos mit N<sub>primär</sub> Windungen und der Länge <math>l</math> wird vom Primärstrom ''I''<sub>primär</sub> durchflossen, wodurch ein Magnetfeld erzeugt wird, das im Inneren der Spule besonders stark ist. Die magnetische Flussdichte beträgt dort:
 
:<math>B= \mu_\mathrm{r} \cdot \mu_0 \cdot \frac{N_\mathrm{p}}{l} \cdot I_\mathrm{p}</math>
 
Dabei ist μ<sub>0</sub> die [[Magnetische Feldkonstante]] und μ<sub>r</sub> die [[Permeabilitätszahl]] des Spulenkerns. Wenn sich dieses Magnetfeld ''nicht'' ändert, wird auch keine Spannung induziert. Wenn es sich ändert, wird in einer oder mehreren Sekundärspule(n) ebenso wie in der Primärspule ([[Selbstinduktion]]) eine Wechselspannung induziert, die proportional zur Windungszahl steigt. Die Kurvenform der Sekundärspannung kann von der Kurvenform der Primärspannung erheblich abweichen.
 
Es gibt unterschiedliche Möglichkeiten, elektrische Spannung durch [[Elektromagnetische Induktion#Induktionsspannung durch Änderung des magnetischen Flusses (2. Induktionsphänomen)|Elektromagnetische Induktion]] zu erzeugen. Der für den Trafo relevante Teil der etwas umfangreichen Gleichung lautet
:<math>U_\mathrm{ind}=N_{sek}\cdot A\cdot \frac{\mathrm{d}B}{\mathrm{d}t}
=N_\mathrm{sek}\cdot \mu_r \cdot \mu_0 \cdot \frac{A\cdot N_p}{l}\cdot \frac{\mathrm{d}I_p}{\mathrm{d}t}
</math>
 
wenn man, wie üblich, die ''N''<sub>sek</sub> Windungen der Sekundärspule eng anliegend auf den Eisenkern mit der Querschnittsfläche ''A'' wickelt. Fasst man alle uninteressanten und konstanten Faktoren in ''C'' zusammen, erhält man
:<math>U_\mathrm{ind}=C\cdot \mu_\mathrm{r} \cdot \frac{\mathrm{d}I_\mathrm{p}}{\mathrm{d}t}</math>
In dieser Gleichung ist klar ersichtlich, dass es für den Betrag der induzierten Spannung ''nur'' darauf ankommt, wie ''schnell'' sich ''I<sub>p</sub>'' ändert und wie sich μ<sub>r</sub> verhält.  
*Der Quotient d''I''<sub>p</sub>/d''t'' (die zeitliche ''Änderung'') muss groß sein, denn die Zeitdifferenz d''t'' steht im Nenner. Das hat eine weitreichende Auswirkung: Je kleiner d''t'' ist, also je schneller sich der Strom ändert, desto größer ist die induzierte Spannung. Das wird in Impulstrafos wie [[Zündspule]] und [[Funkeninduktor]] oder  beim [[Elektrozaun]] ausgenutzt, um durch schnelles ''Abschalten'' des Stromes [[Hochspannung]] zu erzeugen. Bei Betrieb mit Gleichstrom lässt sich diese Hochspannung mit einer parallel geschalteten [[Schutzdiode#Freilaufdiode|Freilaufdiode]] verhindern, wenn sie nicht gewünscht ist. Zum Beispiel beim Ausschalten von Schützspulen. Der Stromverlauf beim Einschalten einer Spule mit einer Gleichspannung wird [[Zeitkonstante#Zeitkonstante bei einer Induktivität|hier]] erklärt.
*Der Quotient d''I''<sub>p</sub>/d''t'' (die zeitliche ''Änderung'') muss groß sein, denn die Zeitdifferenz d''t'' steht im Nenner. Das hat eine weitreichende Auswirkung: Je kleiner d''t'' ist, also je schneller sich der Strom ändert, desto größer ist die induzierte Spannung. Das wird in Impulstrafos wie [[Zündspule]] und [[Funkeninduktor]] oder  beim [[Elektrozaun]] ausgenutzt, um durch schnelles ''Abschalten'' des Stromes [[Hochspannung]] zu erzeugen. Bei Betrieb mit Gleichstrom lässt sich diese Hochspannung mit einer parallel geschalteten [[Schutzdiode#Freilaufdiode|Freilaufdiode]] verhindern, wenn sie nicht gewünscht ist. Zum Beispiel beim Ausschalten von Schützspulen. Der Stromverlauf beim Einschalten einer Spule mit einer Gleichspannung wird [[Zeitkonstante#Zeitkonstante bei einer Induktivität|hier]] erklärt.
*Der Materialparameter μ<sub>r</sub> hat in Luft den Wert 1. Das ist problemlos, sorgt aber bei langsamen Stromänderungen für geringe induzierte Spannung.
*Der Materialparameter μ<sub>r</sub> hat in Luft den Wert 1. Das ist problemlos, sorgt aber bei langsamen Stromänderungen für geringe induzierte Spannung.
*Falls (bei tiefen Frequenzen) die Primärspule einen Eisenkern besitzt, ist μ<sub>r</sub> viel größer, aber leider nicht konstant und kann zwischen etwa 50.000 und 1 schwanken. Das ist Ursache für eine Reihe von Problemen, die bei luftgefüllten Trafos nicht existieren.
*Falls (bei tiefen Frequenzen) die Primärspule einen Eisenkern besitzt, ist μ<sub>r</sub> viel größer, aber leider nicht konstant und kann zwischen etwa 50.000 und 1 schwanken. Das ist Ursache für eine Reihe von Problemen, die bei luftgefüllten Trafos nicht existieren.
[[Datei:wechselspannungsformen.gif|miniatur|Drei häufige Formen von Wechselspannung]]
[[Datei:2000px-Wechselspannungsformen.svg.png|miniatur|Häufige Formen von Wechselspannung]]


Beispiel: Das Magnetfeld ändere sich in 2&nbsp;ms um 0,3&nbsp;T, dann ist dB/dt&nbsp;=&nbsp;150&nbsp;T/s. Mit einer richtig orientierten Spulenfläche von 6&nbsp;cm² erhält man 90&nbsp;mV pro Windung.
Beispiel: Das Magnetfeld ändere sich in 2&nbsp;ms um 0,3&nbsp;T, dann ist dB/dt&nbsp;=&nbsp;150&nbsp;T/s. Mit einer richtig orientierten Spulenfläche von 6&nbsp;cm² erhält man 90&nbsp;mV pro Windung.


Ein Trafo kann die Kurvenform und/oder die [[Phasenverschiebung|Phase]] von Wechselstrom ändern. Um dieses Übertragungsverhalten zu verstehen, kann man die Primärspule an einen [[Funktionsgenerator]] legen und Kurvenformen wie Dreieckspannung, Rechteckspannung oder sinusförmigen Wechselspannung wählen.
Ein Trafo kann die Kurvenform und/oder die [[Phasenverschiebung|Phase]] von Wechselstrom verändern, was jedoch meist nicht erwünscht ist. Um dieses Übertragungsverhalten zu untersuchhen, kann man die Primärspule an einen [[Funktionsgenerator]] legen und Kurvenformen wie Dreieckspannung, Rechteckspannung oder sinusförmigen Wechselspannung wählen.


== Betrieb mit einer Dreiecksspannung ==
== Übertragungsverhalten ==


Das Übertragungsverhalten eines Trafos lässt sich auch erklären, wenn man statt der üblichen sinusförmigen Wechselspannung des [[Stromnetz]]es eine Dreieckspannung aus einem [[Funktionsgenerator]] anlegt, weil dann die physikalischen Gleichungen leichter zu durchschauen sind. Dabei sind zwei Fälle zu unterscheiden: Bei der verwendeten Frequenz ist der [[Induktiver Widerstand|induktive Widerstand]] der Primärspule  
Das Übertragungsverhalten eines Trafos lässt sich untersuchen, wenn man statt der üblichen sinusförmigen Wechselspannung des [[Stromnetz]]es unterschiedliche Spannungen aus einem [[Funktionsgenerator]] anlegt. Dabei sind zwei Fälle zu unterscheiden: Bei einer bestimmten Frequenz ist der [[elektrischer Widerstand|''induktive'' Widerstand]] der Primärspule  
*viel ''kleiner'' als ihr ohmscher Widerstand; dann ist die Phasenverschiebung zwischen Strom und Spannung fast Null und es gelten die Proportionalitäten: ''U''<sub>primär</sub>&nbsp;≈&nbsp;''I''<sub>primär</sub>&nbsp;≈&nbsp;B&nbsp;≈&nbsp;Φ;
*viel ''kleiner'' als ihr ohmscher Widerstand; dann ist die Phasenverschiebung zwischen Strom und Spannung fast Null und es gelten die Proportionalitäten: ''U''<sub>primär</sub>&nbsp;≈&nbsp;''I''<sub>primär</sub>&nbsp;≈&nbsp;B&nbsp;≈&nbsp;Φ;
*viel ''größer'' als der ohmsche Widerstand. Dann besteht zwischen Strom und Spannung eine [[Phasenverschiebung]].
*viel ''größer'' als der ohmsche Widerstand. Dann besteht zwischen Strom und Spannung eine [[Phasenverschiebung]].


<gallery>
2000px-Series RC capacitor voltage.svg.png|Strom ''I''<sub>L</sub> durch die Spule nach dem Einschalten an eine Gleichspannung als Funktion der Zeit
Dreieckspannung.png|Primär Dreieckspannung ''vor'' dem Vorwiderstand, sekundär Rechteckspannung
</gallery>
=== Betrieb mit eingeprägtem Strom ===
=== Betrieb mit eingeprägtem Strom ===
[[Datei:Trafo diff 1.jpg|miniatur|Der Trafo differenziert:<br>Input = Dreieck''strom'',<br/>Output = Rechteckspannung]]
[[Datei:Trafo diff 1.jpg|miniatur|Der Trafo differenziert:<br>Input = Dreieck''strom'',<br/>Output = Rechteckspannung]]
[[Datei:Trafo diff 2.jpg|miniatur|Der Trafo differenziert:<br>Input = abgeschnittener Dreieck''strom'',<br/>Output = Rechteckspannung mit 0-Volt-Linien]]
[[Datei:Dreieckspannung.png|miniatur|links|Transformator mit eingeprägtem ''Strom'': primär Dreieckspannung ''vor'' dem Vorwiderstand, sekundär Rechteckspannung]]


Die Primärspule wird mit [[Elektrischer Strom#Eingeprägter Strom|eingeprägtem]] Strom betrieben, wenn die Dreieckspannung über einen ausreichend großen Vorwiderstand eingespeist wird, der mindestens zehnmal größer ist als die Impedanz der Primärspule. Der Vorwiderstand kann auch der ohmsche Widerstand der Spule sein. Diese Bedingung wird von ''jedem'' Trafo erfüllt, wenn die Frequenz nur ausreichend tief ist, weil der [[induktiver Widerstand|induktive Widerstand]] proportional zur Betriebsfrequenz sinkt.  
Die Primärspule wird mit eingeprägtem [[elektrischer Strom|Strom]] betrieben, wenn die [[elektrische Spannung]] über einen ausreichend großen Vorwiderstand eingespeist wird, der mindestens zehnmal größer ist als die Impedanz der Primärspule. Der Vorwiderstand kann auch der ohmsche Widerstand der Spule sein. Diese Bedingung wird von ''jedem'' Trafo erfüllt, wenn die Frequenz nur ausreichend tief ist, weil der [[induktiver Widerstand|induktive Widerstand]] proportional zur Frequenz sinkt.  


Hier sind Spannung ''U''<sub>primär</sub> ''und'' Strom ''I''<sub>primär</sub> aus steigenden und fallenden Geradenstücken zusammengesetzt (blaue Dreiecksfunktion im Bild links). Weil die [[Differentialrechnung#Ableitungsregeln|Ableitung]] einer Geraden konstanten Wert besitzt, gilt in Verbindung mit der Proportion ''U''<sub>primär</sub>&nbsp;≈&nbsp;''I''<sub>primär</sub>&nbsp;≈&nbsp;''B''&nbsp;≈&nbsp;Φ die einfache Aussage dΦ/dt&nbsp;=&nbsp;±''konstant'' und aus der Gleichung
Hier sind Spannung ''U''<sub>primär</sub> ''und'' Strom ''I''<sub>primär</sub> aus steigenden und fallenden Geradenstücken zusammengesetzt (blaue Dreiecksfunktion im Bild links). Weil die [[erste Ableitung]] jeder Geraden einen konstanten Wert besitzt, gilt in Verbindung mit der Proportion ''U''<sub>primär</sub>&nbsp;≈&nbsp;''I''<sub>primär</sub>&nbsp;≈&nbsp;''B''&nbsp;≈&nbsp;Φ die einfache Aussage dΦ/dt&nbsp;=&nbsp;±''konstant''
 
:<math>U_\mathrm{ind}=N_\mathrm{sek}\cdot \frac{\mathrm{d}B}{\mathrm{d}t}\cdot A\qquad \text{wird}\qquad U_\mathrm{ind}=\pm konstant\cdot N_\mathrm{sek}\cdot A</math>


Die sekundärseitig induzierte Spannung kann also nur zwischen zwei Werten wechseln. Sie ist genau so lange konstant, wie die Primärspannung steigt und ändert ihr Vorzeichen, wenn die Primärspannung fällt, wie im nebenstehenden Bild rot eingezeichnet ist. Die Übergänge erfolgen schlagartig. Mathematisch gesehen, differenziert diese Anordnung die angebotene Dreieckspannung bzw. den Strom (beide sind über ''U''&nbsp;=&nbsp;''R''·''I'' verknüpft). Wenn die Dreieckspannung schneller steigen als fallen würde (asymmetrische [[Kippschwingung]]), wäre während der Steigzeit auch ''U''<sub>sek</sub> deutlich größer.
Die sekundärseitig induzierte Spannung kann also nur zwischen zwei Werten wechseln. Sie ist genau so lange konstant, wie die Primärspannung steigt und ändert ihr Vorzeichen, wenn die Primärspannung fällt, wie im nebenstehenden Bild rot eingezeichnet ist. Die Übergänge erfolgen schlagartig. Mathematisch gesehen, differenziert diese Anordnung die angebotene Dreieckspannung bzw. den Strom (beide sind über ''U''&nbsp;=&nbsp;''R''·''I'' verknüpft). Wenn die Dreieckspannung schneller steigen als fallen würde (asymmetrische [[Kippschwingung]]), wäre während der Steigzeit auch ''U''<sub>sek</sub> deutlich größer.
Zeile 53: Zeile 39:
Beim Vergleich der beiden Oszillogramme erkennt man, was ein stückweise konstanter Primärstrom bewirkt: Sobald sich I<sub>primär</sub> ''nicht'' ändert, weil die Spitzen der Dreiecke abgeschnitten werden, kann der Eisenkern zwar magnetisiert sein, das ''B''-Feld ändert sich aber nicht und deshalb wird in der Sekundärspule keine Spannung induziert. Während der Zeitspannen, in denen die Dreieckspannung flache Stellen hat, zeigt das Oszillogramm null Volt an.  
Beim Vergleich der beiden Oszillogramme erkennt man, was ein stückweise konstanter Primärstrom bewirkt: Sobald sich I<sub>primär</sub> ''nicht'' ändert, weil die Spitzen der Dreiecke abgeschnitten werden, kann der Eisenkern zwar magnetisiert sein, das ''B''-Feld ändert sich aber nicht und deshalb wird in der Sekundärspule keine Spannung induziert. Während der Zeitspannen, in denen die Dreieckspannung flache Stellen hat, zeigt das Oszillogramm null Volt an.  


Falls der Trafo einen Eisenkern besitzt, kann dieser bei großen Strömen magnetisch [[Sättigungsmagnetisierung|gesättigt]] werden. Dann sinkt μ<sub>r</sub> von sehr hohen Werten um 5000 auf nur 1. Aus der obigen Gleichung folgt dann, dass die Flussdichte ''B'' kaum noch zunehmen kann (d''B'' wird Null), auch wenn der Primärstrom stark ansteigt. Das hat die gleiche Konsequenz wie ein konstanter Strom: Die induzierte Sekundärspannung wird Null.
Falls der Trafo einen Eisenkern besitzt, kann dieser bei großen Strömen magnetisch [[Sättigungsmagnetisierung|gesättigt]] werden. Dann sinkt μ<sub>r</sub> von sehr hohen Werten um 5000 auf nur 1. Hinzu kommt, dass die Flussdichte ''B'' kaum noch zunehmen kann (d''B'' wird Null), auch wenn der Primärstrom stark ansteigt. Das hat die gleiche Konsequenz wie ein konstanter Strom: Die induzierte Sekundärspannung wird Null.


Die Eigenschaft, dass ''jeder'' Transformator ''I''<sub>primär</sub> differenziert, bewirkt beim [[Stromwandler]] und bei der [[Rogowskispule]], dass ''Gleich''ströme nicht gemessen werden können.
Die Eigenschaft, dass ''jeder'' Transformator ''I''<sub>primär</sub> differenziert, bewirkt beim [[Stromwandler]] und bei der [[Rogowskispule]], dass ''Gleich''ströme nicht gemessen werden können.
Zeile 59: Zeile 45:
=== Betrieb mit eingeprägter Spannung ===
=== Betrieb mit eingeprägter Spannung ===
[[Datei:Trafo 1zu1b.png|miniatur|Transformator mit eingeprägter Dreieckspannung, sekundär ebenfalls Dreieckspannung]]
[[Datei:Trafo 1zu1b.png|miniatur|Transformator mit eingeprägter Dreieckspannung, sekundär ebenfalls Dreieckspannung]]
Die Primärspule wird mit [[Elektrische Spannung#Eingeprägte Spannung|eingeprägter]] Spannung betrieben, wenn die Impedanz der Spule mindestens zehnmal größer ist als ihr ohmscher Widerstand. Das kann bei ''jedem'' Trafo durch ausreichend hohe Frequenz erreicht werden. Bei tiefen Frequenzen ([[Netzfrequenz]]) wählt man meist einen zusätzlichen Eisenkern mit großem μ<sub>r</sub>, um die [[Induktivität]] zu vergrößern. U<sub>primär</sub> wird dann mit unveränderter Kurvenform übertragen, solange der Kern nicht in Sättigung gerät. Die Begründung:  
Die Primärspule wird mit eingeprägter]] Spannung betrieben, wenn die Impedanz der Spule mindestens zehnmal größer ist als ihr ohmscher Widerstand. Das kann bei ''jedem'' Trafo durch ausreichend hohe Frequenz erreicht werden. Bei tiefen Frequenzen wählt man meist einen zusätzlichen Eisenkern mit großem μ<sub>r</sub>, um die [[Induktivität]] zu vergrößern. U<sub>primär</sub> wird dann mit unveränderter Kurvenform übertragen, solange der Kern nicht in Sättigung gerät. Die Begründung:  
*Die angelegte Wechselspannung ''U''<sub>primär</sub> lässt in der Primärspule einen Wechselstrom fließen, der im Eisenkern ein magnetisches Wechselfeld erzeugt.
*Die angelegte Wechselspannung ''U''<sub>primär</sub> lässt in der Primärspule einen Wechselstrom fließen, der im Eisenkern ein magnetisches Wechselfeld erzeugt.
*Dieses induziert in allen Spulen des Trafos, also ''auch'' in der Primärspule eine „Gegenspannung“ ''U''<sub>induziert</sub>, die fast so groß ist wie die angelegte Wechselspannung und diese weitgehend kompensiert ([[Lenzsche Regel]]). Als „Antriebsspannung“ für den Primärstrom steht nur die geringe Differenzspannung ''U''<sub>primär</sub>&nbsp;-&nbsp;''U''<sub>induziert</sub> zur Verfügung, die am ohmschen Widerstand des Spulendrahtes abfällt. Deshalb ist der Primärstrom so gering.
*Dieses induziert in allen Spulen des Trafos, also ''auch'' in der Primärspule eine „Gegenspannung“ ''U''<sub>induziert</sub>, die fast so groß ist wie die angelegte Wechselspannung und diese weitgehend kompensiert ([[Lenzsche Regel]]). Als „Antriebsspannung“ für den Primärstrom steht nur die geringe Differenzspannung ''U''<sub>primär</sub>&nbsp;-&nbsp;''U''<sub>induziert</sub> zur Verfügung, die am ohmschen Widerstand des Spulendrahtes abfällt. Deshalb ist der Primärstrom so gering.
Zeile 66: Zeile 52:


=== Betrieb mit Frequenzgemisch ===
=== Betrieb mit Frequenzgemisch ===
[[Datei:Bandwidth.svg|miniatur|Der Abstand ''f''<sub>2</sub> bis ''f''<sub>1</sub> heißt Bandbreite]]
[[Datei:2000px-Bandwidth.svg.png|miniatur|Der Abstand ''f''<sub>2</sub> bis ''f''<sub>1</sub> heißt Bandbreite]]
In diesem Artikel werden nur Breitbandtrafos behandelt, die&nbsp;– wie Audiotransformatoren&nbsp;– ein Frequenzgemisch von ''f''<sub>1</sub>&nbsp;=&nbsp;50&nbsp;Hz bis ''f''<sub>2</sub>&nbsp;=&nbsp;20&nbsp;kHz übertragen müssen (Dreieckspannung ist auch ein Frequenzgemisch). Dabei ändert sich die Impedanz der Primärspule im gleichen Verhältnis 20000/50&nbsp;=&nbsp;400, was dazu führt, dass bei tiefen Frequenzen der ohmsche und bei hohen Frequenzen der induktive Anteil am Gesamtwiderstand überwiegt.  
Breitbandtrafos&nbsp;– wie Audiotransformatoren&nbsp;– übertragen ein Frequenzgemisch von etwas 50&nbsp;Hz bis 20&nbsp;kHz. Die Dreiecks- und Rechteckspannung (auch als Sägezahnspannung bezeichnet) ist aus der Sicht der Tontechik auch ein Frequenzgemisch. Dabei ändert sich die Impedanz der Primärspule im gleichen Verhältnis 20000/50&nbsp;=&nbsp;400, was dazu führt, dass bei tiefen Frequenzen der ohmsche und bei hohen Frequenzen der induktive Anteil am Gesamtwiderstand überwiegt.  
*Bei tiefen Frequenzen ist  der Primärstrom [[Elektrischer Strom#Eingeprägter Strom|eingeprägt]], der Trafo differenziert. Das bedeutet zum einen eine Phasenverschiebung von etwa 90° zwischen Ein- und Ausgangsspannung, zum anderen sinkt die induzierte Sekundärspannung proportional zur Frequenz. Für eine möglichst tiefe Grenzfrequenz muss die Primärspule möglichst viele Windungen haben, damit die Impedanz ausreichend groß bleibt.
*Bei tiefen Frequenzen kann eine Phasenverschiebung bis 90° zwischen Ein- und Ausgangsspannung auftreten, zum anderen sinkt die induzierte Sekundärspannung proportional zur Frequenz. Für tiefe Frequenzen muss die Primärspule möglichst viele Windungen haben, damit die Impedanz ausreichend groß bleibt.
*Bei mittleren Frequenzen überträgt der Trafo die Kurvenform 1:1, da mit [[Elektrische Spannung#Eingeprägte Spannung|eingeprägter Spannung]] gearbeitet wird. Die Phasenverschiebung beträgt etwa 0°.
*Bei mittleren Frequenzen überträgt der Trafo die Kurvenform 1:1, wenn mit eingeprägter Spannung gearbeitet wird. Die Phasenverschiebung beträgt dann 0°.
*Bei hohen Frequenzen macht sich immer stärker der Einfluss der Wicklungskapazität bemerkbar, der den Wechselstrom nicht ''durch'' die Spule, sondern zunehmend durch die parallel liegende, unvermeidbare Kapazität fließen lässt. Zusammen können beide einen [[Schwingkreis]] bilden, der einen schmalen Frequenzbereich bevorzugt. Dieser liegt umso tiefer, je mehr Windungen die Spule besitzt. Es treten wieder deutliche Phasenverschiebungen auf.
*Bei hohen Frequenzen macht sich immer stärker der Einfluss der Wicklungskapazität bemerkbar, der den Wechselstrom nicht ''durch'' die Spule, sondern zunehmend durch die parallel liegende, unvermeidbare Kapazität fließen lässt. Zusammen können beide einen [[Schwingkreis]] bilden, der einen schmalen Frequenzbereich bevorzugt. Dieser liegt umso tiefer, je mehr Windungen die Spule besitzt. Es treten wieder deutliche Phasenverschiebungen auf.
Die Forderungen für hohe und tiefe Grenzfrequenz widersprechen sich, deshalb sind Breitbandtrafos schwierig zu bauen.


== Betrieb mit einer Rechteckspannung ==
== Betrieb mit einer Rechteckspannung ==
[[Datei:Series RC capacitor voltage.svg|miniatur|rechts|Strom ''I''<sub>L</sub> durch die Spule nach dem Einschalten an eine Gleichspannung als Funktion der Zeit]]
[[Datei:Sättigung.png|miniatur|Sättigungsmagnetisierung eines Eisenkerns. rot=Primärspannung, blau=Sekundärspannung]]
[[Datei:Sättigung.png|miniatur|Sättigungsmagnetisierung eines Eisenkerns. rot=Primärspannung, blau=Sekundärspannung]]
[[Datei:Sperrwandlerschema.svg|miniatur|Prinzip des Sperrwandlers]]
[[Datei:2000px-Sperrwandlerschema.svg.png|miniatur|Prinzip des Sperrwandlers]]
[[Datei:Sperrwandler U I.png|miniatur|Spannungen und Ströme beim Sperrwandler]]
[[Datei:Sperrwandler U I.png|miniatur|Spannungen und Ströme beim Sperrwandler]]
In [[Schaltnetzteil]]en werden Trafos immer mit rechteckförmigen Spannungsverläufen versorgt, weil dadurch die [[Verlustleistung]] in den elektronischen Schaltern ([[Transistor]]en) sehr gering sind. Die Spannung wird von Kondensatoren mit geringen [[Innenwiderstand|Innenwiderständen]] bereitgestellt, deshalb liegt hier Betrieb mit [[Elektrische Spannung#Eingeprägte Spannung|eingeprägter Spannung]] vor. Wenn durch die Primärspule vorher kein Strom geflossen ist, steigt dieser nach dem Einschalten ''immer'' nach der gleichen [[Induktivität#Zeitkonstante|Gesetzmäßigkeit]] an, die im nebenstehenden Bild dargestellt ist: Zunächst schnell, dann langsamer und schließlich strebt der Strom dem Grenzwert U<sub>prim</sub>/R zu, wobei R der ohmsche Widerstand der Primärwicklung ist. Dann ist das Magnetfeld zwar sehr stark, es ändert sich aber nicht mehr und deshalb sinkt die induzierte Spannung auf Null. Weit vorher muss der Strom abgeschaltet werden, um den Transistor nicht zu gefährden und den Eisenkern nicht in die [[Sättigungsmagnetisierung]] zu treiben.
In [[Schaltnetzteil]]en werden Trafos immer mit rechteckförmigen Spannungsverläufen versorgt, weil dadurch die [[Verlustleistung]] in den elektronischen Schaltern ([[Transistor]]en) sehr gering sind. Die Spannung wird von Kondensatoren mit geringen [[Innenwiderstand|Innenwiderständen]] bereitgestellt, deshalb liegt hier Betrieb mit ''eingeprägter Spannung'' vor. Wenn durch die Primärspule vorher kein Strom geflossen ist, steigt dieser nach dem Einschalten ''immer'' nach der gleichen Gesetzmäßigkeit an, die im nebenstehenden Bild dargestellt ist: Zunächst schnell, dann langsamer und schließlich strebt der Strom dem Grenzwert U<sub>prim</sub>/R zu, wobei R der ohmsche Widerstand der Primärwicklung ist. Dann ist das Magnetfeld zwar sehr stark, es ändert sich aber nicht mehr und deshalb sinkt die induzierte Spannung auf Null. Weit vorher muss der Strom abgeschaltet werden, um den Transistor nicht zu gefährden und den Eisenkern nicht in die [[Sättigungsmagnetisierung]] zu treiben.


Im nebenstehenden Bild wird deutlich ''vor'' dem Zeitpunkt, an dem die rot dargestellte Wechselspannung periodisch umgepolt wird, der Eisenkern gesättigt. Obwohl die Spannung weiterhin anliegt und der Primärstrom stark ansteigt (nicht aufgezeichnet), wird die induzierte Spannung (blau dargestellt) zu Null, weil die Änderung des Magnetfeldes ''dΦ'' auch Null wird. Bei höherer Frequenz und entsprechend kürzerer Einschaltdauer wäre dieser Effekt nicht aufgetreten. Die Spannungszeitfläche der angelegten Spannungshalbwelle ist hier größer als die für welche der Trafo ausgelegt ist. (Windungszahl und oder Eisenfläche sind zu klein.)
Im nebenstehenden Bild wird deutlich ''vor'' dem Zeitpunkt, an dem die rot dargestellte Wechselspannung periodisch umgepolt wird, der Eisenkern gesättigt. Obwohl die Spannung weiterhin anliegt und der Primärstrom stark ansteigt (nicht aufgezeichnet), wird die induzierte Spannung (blau dargestellt) zu Null, weil die Änderung des Magnetfeldes ''dΦ'' auch Null wird. Bei höherer Frequenz und entsprechend kürzerer Einschaltdauer wäre dieser Effekt nicht aufgetreten. Die Spannungszeitfläche der angelegten Spannungshalbwelle ist hier größer als die für welche der Trafo ausgelegt ist. (Windungszahl und oder Eisenfläche sind zu klein.)


Als Beispiel wird angenommen, dass als Primärspule zehn Windungen dicker Kupferdraht auf einen [[Ferrit]]-Kern mit der [[Induktivität#Bestimmung der Induktivität mittels AL-Wert|Kennzahl]] A<sub>L</sub>&nbsp;=&nbsp;1200&nbsp;nH gewickelt werden. Diese Spule hat die Induktivität 120&nbsp;µH und wird über einen Schalttransistor Q mit einem Kondensator verbunden, der auf 300&nbsp;V aufgeladen ist. Mit einem Gesamtwiderstand der Reihenschaltung dieser Bauelemente von 1&nbsp;Ω ergibt sich die [[Induktivität#Zeitkonstante|Zeitkonstante]] T&nbsp;=&nbsp;120&nbsp;µs. In dieser Zeit steigt der Strom fast linear an und erreicht 63,2 % des Endwertes 300&nbsp;A. Wenn der Schalttransistor 19&nbsp;A aushält, darf er also nur 12&nbsp;µs lang bis t<sub>1</sub> eingeschaltet sein. Während dieser Zeit entnimmt er dem Kondensator die Energie E&nbsp;=&nbsp;0,5·L·J²&nbsp;=&nbsp;22&nbsp;mWs.
Als Beispiel wird angenommen, dass als Primärspule zehn Windungen dicker Kupferdraht auf einen [[Ferrit]]-Kern mit der Kennzahl A<sub>L</sub>&nbsp;=&nbsp;1200&nbsp;nH gewickelt werden. Diese Spule hat die Induktivität 120&nbsp;µH und wird über einen Schalttransistor Q mit einem Kondensator verbunden, der auf 300&nbsp;V aufgeladen ist. Mit einem Gesamtwiderstand der Reihenschaltung dieser Bauelemente von 1&nbsp;Ω ergibt sich die [[Induktivität#Zeitkonstante|Zeitkonstante]] T&nbsp;=&nbsp;120&nbsp;µs. In dieser Zeit steigt der Strom fast linear an und erreicht 63,2 % des Endwertes 300&nbsp;A. Wenn der Schalttransistor 19&nbsp;A aushält, darf er also nur 12&nbsp;µs lang bis t<sub>1</sub> eingeschaltet sein. Während dieser Zeit entnimmt er dem Kondensator die Energie E&nbsp;=&nbsp;0,5·L·J²&nbsp;=&nbsp;22&nbsp;mWs.


=== Sperrwandler ===
=== Sperrwandler ===
Diese Energie wird beim [[Sperrwandler]] während der Einschaltphase 0...t<sub>1</sub> als magnetische Feldenergie in der [[Drossel (Elektrotechnik)#Speicherdrosseln|Speicherdrossel]] mit [[Luftspalt]] gespeichert und ''nach'' dem Abschalten des Transistors ähnlich wie bei einem [[Funkeninduktor]] als Spannungsimpuls an der Sekundärspule abgenommen. In [[Netzgerät]]en oder bei [[Blitzlicht#Elektronenblitzgeräte|Elektronenblitzgeräten]] lädt man mit dieser Energie einen Kondensator C (rechts im Bild) auf. Dabei gibt es ''kein'' festes Spannungsübersetzungsverhältnis nach der Form U<sub>p</sub>/U<sub>s</sub>&nbsp;=&nbsp;N<sub>p</sub>/N<sub>s</sub>, sondern die Sekundärspannung springt schlagartig auf auf die Spannung, die der Kondensator (noch) hat, weil die Primärspannung ebenfalls nicht in ihrer Höhe definiert ist nach dem Abschalten. Dadurch wird der [[Gleichrichter]] D leitend und es fließt von t<sub>1</sub> bis t<sub>2</sub> Strom, der den Kondensator C auflädt. Wenn die gespeicherte magnetische Energie auf den Kondensator übertragen wurde, bricht die Sekundärspannung und die Primärspannung zusammen und nach einer kurzen Pause kann auf die Primärspule ab T der nächste Stromimpuls gegeben werden. Wichtig ist es zu wissen, dass die zu übertragende Energie nur im Luftspalt zwischen gespeichert wird, (Spannung mal Strom mal Zeit), weshalb solche Übertrager alle einen definierten Luftspalt haben müssen.
Diese Energie wird beim [[Sperrwandler]] während der Einschaltphase 0...t<sub>1</sub> als magnetische Feldenergie in der [[Drossel (Elektrotechnik)|Drossel]] mit [[Luftspalt]] gespeichert und ''nach'' dem Abschalten des Transistors ähnlich wie bei einem [[Funkeninduktor]] als Spannungsimpuls an der Sekundärspule abgenommen. In [[Netzgerät]]en oder bei [[Blitzlicht|Elektronenblitzgeräten]] lädt man mit dieser Energie einen Kondensator C (rechts im Bild) auf. Dabei gibt es ''kein'' festes Spannungsübersetzungsverhältnis nach der Form U<sub>p</sub>/U<sub>s</sub>&nbsp;=&nbsp;N<sub>p</sub>/N<sub>s</sub>, sondern die Sekundärspannung springt schlagartig auf auf die Spannung, die der Kondensator (noch) hat, weil die Primärspannung ebenfalls nicht in ihrer Höhe definiert ist nach dem Abschalten. Dadurch wird der [[Gleichrichter]] D leitend und es fließt von t<sub>1</sub> bis t<sub>2</sub> Strom, der den Kondensator C auflädt. Wenn die gespeicherte magnetische Energie auf den Kondensator übertragen wurde, bricht die Sekundärspannung und die Primärspannung zusammen und nach einer kurzen Pause kann auf die Primärspule ab T der nächste Stromimpuls gegeben werden. Wichtig ist es zu wissen, dass die zu übertragende Energie nur im Luftspalt zwischen gespeichert wird, (Spannung mal Strom mal Zeit), weshalb solche Übertrager alle einen definierten Luftspalt haben müssen.


Die Energiezufuhr bewirkt beim Kondensator eine Spannungserhöhung, die sich mit der Gleichung E&nbsp;=&nbsp;0,5·C·U² berechnen lässt. Durch Differenzieren erhält man ΔE&nbsp;=&nbsp;C·U·ΔU. Wenn ein 2000&nbsp;µF-Kondensator (noch) auf 12&nbsp;V aufgeladen ist, erzeugt der nächste Energieimpuls von 22&nbsp;mWs einen Spannunganstieg um ΔU&nbsp;=&nbsp;0,9&nbsp;V.
Die Energiezufuhr bewirkt beim Kondensator eine Spannungserhöhung, die sich mit der Gleichung E&nbsp;=&nbsp;0,5·C·U² berechnen lässt. Durch Differenzieren erhält man ΔE&nbsp;=&nbsp;C·U·ΔU. Wenn ein 2000&nbsp;µF-Kondensator (noch) auf 12&nbsp;V aufgeladen ist, erzeugt der nächste Energieimpuls von 22&nbsp;mWs einen Spannunganstieg um ΔU&nbsp;=&nbsp;0,9&nbsp;V.
Zeile 98: Zeile 81:
:<math>U_{max}=300\,V+\frac{13\,V}{0,1}=430\,V</math>
:<math>U_{max}=300\,V+\frac{13\,V}{0,1}=430\,V</math>


=== [[Durchflusswandler]] ===
=== Durchflusswandler ===
Hier findet ''keine'' Zwischenspeicherung der Energie im Eisenkern statt, sondern während der gesamten Einschaltphase des Transistors wird Energie an den Sekundärkreis übertragen. Der Eisenkern darf keinen Luftspalt besitzen, die [[Hysterese]]kurve soll schmal sein. Auch hier gilt - wie bei jedem Trafo - dass die induzierte Spannung pro Windung in allen Wicklungen gleich ist. Wenn im Zeitraum 0 bis t<sub>1</sub> 300&nbsp;V an die Primärspule gelegt werden und ''gleichzeitig'' an der Sekundärspule 13&nbsp;V erwartet werden, muss das Transformationsverhältnis ''ü&nbsp;=&nbsp;N<sub>s</sub>/N<sub>p</sub>&nbsp;=&nbsp;U<sub>s</sub>/U<sub>p</sub>&nbsp;=&nbsp;13&nbsp;V/300&nbsp;V&nbsp;=&nbsp;0,043'' betragen.
Beim [[Durchflusswandler]] findet ''keine'' Zwischenspeicherung der Energie im Eisenkern statt, sondern während der gesamten Einschaltphase des Transistors wird Energie an den Sekundärkreis übertragen. Der Eisenkern darf keinen Luftspalt besitzen, die [[Hysterese]]kurve soll schmal sein. Auch hier gilt - wie bei jedem Trafo - dass die induzierte Spannung pro Windung in allen Wicklungen gleich ist. Wenn z.B. im Zeitraum 0 bis t<sub>1</sub> 300&nbsp;V an die Primärspule gelegt werden und ''gleichzeitig'' an der Sekundärspule 13&nbsp;V erwartet werden, muss das Transformationsverhältnis ''ü&nbsp;=&nbsp;N<sub>s</sub>/N<sub>p</sub>&nbsp;=&nbsp;U<sub>s</sub>/U<sub>p</sub>&nbsp;=&nbsp;13&nbsp;V/300&nbsp;V&nbsp;=&nbsp;0,043'' betragen.


Wird der Transformator mit Rechteckspannung betrieben, ist ein Eisenkern fast zwingend erforderlich, denn ''ohne'' einen solchen würde man sehr viele Windungen für eine ausreichend große Induktivität ''L'' benötigen und der ohmsche Widerstand der Spule wäre recht groß. Dadurch würde die Zeitkonstante ''L/R'' viel kleiner sein als im obigen Beispiel und auch die schnellsten Schalttransistoren würden zu langsam schalten.
Wird der Transformator mit Rechteckspannung betrieben, ist ein Eisenkern fast zwingend erforderlich, denn ''ohne'' einen solchen würde man sehr viele Windungen für eine ausreichend große Induktivität ''L'' benötigen, und der ohmsche Widerstand der Spule wäre recht groß. Dadurch würde die Zeitkonstante ''L/R'' viel kleiner sein als im obigen Beispiel und auch die schnellsten Schalttransistoren würden zu langsam schalten.


=== Skin- und Proximity-Effekt ===
=== Skin- und Proximity-Effekt ===
Der [[Skin-Effekt]] tritt vorwiegend bei hohen Signalfrequenzen in Erscheinung. Er bewirkt, dass nur noch das Äußere des Leiters zum Stromfluss beiträgt. Der Skin-Effekt beruht auf der Abschirmungswirkung elektrisch leitfähiger Materialien gegenüber elektromagnetischen Feldern. Nach Küpfmüller, Mathis, Reibiger: ''Theoretische Elektrotechnik'' ist dieser Effekt nicht, wie häufig beschrieben, auf Wirbelströme zurückzuführen. Vielmehr handelt es sich um eine Felddiffusion in den Leiter, bei der die Eindringtiefe begrenzt ist und somit ein Eindringmaß definiert werden kann. Ein metallischer magnetisch neutraler Leiter wirkt für Hochfrequenzfelder wie ein magnetisch undurchlässiger Stoff mit der Permeabilität null. Der Skin-Effekt kann durch die Verwendung von [[Hochfrequenzlitze]] verringert werden. Bei HF-Litze wird ein Leiter durch die Parallelschaltung von gegeneinander elektrisch isolierten und miteinander verwobenen Einzelleitern ersetzt.  
Der [[Skin-Effekt]] tritt vorwiegend bei hohen Frequenzen in Erscheinung. Er bewirkt, dass nur noch das Äußere des Leiters zum Stromfluss beiträgt. Der Skin-Effekt beruht auf der Abschirmungswirkung elektrisch leitfähiger Materialien gegenüber elektromagnetischen Feldern. Nach Küpfmüller, Mathis, Reibiger: ''Theoretische Elektrotechnik'' ist dieser Effekt nicht, wie häufig beschrieben, auf Wirbelströme zurückzuführen. Vielmehr handelt es sich um eine Felddiffusion in den Leiter, bei der die Eindringtiefe begrenzt ist und somit ein Eindringmaß definiert werden kann. Ein metallischer magnetisch neutraler Leiter wirkt für [[Hochfrequenz]]felder (HF) wie ein magnetisch undurchlässiger Stoff mit der Permeabilität null. Der Skin-Effekt kann durch die Verwendung von speziellen Hochfrequenzlitzen verringert werden. Bei der HF-Litze wird ein Leiter durch die Parallelschaltung von gegeneinander elektrisch isolierte und miteinander verwobene Einzelleiter ersetzt.  


Der [[Proximity-Effekt]] beruht auf der Wechselwirkung des Stromes mit den elektromagnetischen Feldern benachbarter Leiter. Insbesondere dann, wenn benachbarte Leiter entgegengesetzt gerichtete Ströme aufweisen, sorgt der Proximity-Effekt für eine verminderte effektive Querschnittsfläche des Leiters.<ref>[http://www.tu-dresden.de/etieeh/Lehre/vorlesungen_eet/Hochspannungsgeraete/G7.pdf http://www.tu-dresden.de/etieeh/Lehre/vorlesungen_eet/Hochspannungsgeraete/G7.pdf]</ref>
Der [[Proximity-Effekt]] beruht auf der Wechselwirkung des Stromes mit den elektromagnetischen Feldern benachbarter Leiter. Insbesondere dann, wenn benachbarte Leiter entgegengesetzt gerichtete Ströme aufweisen, sorgt der Proximity-Effekt für eine verminderte effektive Querschnittsfläche des Leiters.


== Betrieb mit einer Sinusspannung ==
== Betrieb mit einer Sinusspannung ==
[[Datei:Sine voltage.svg|miniatur|Eine sinusförmige Wechselspannung.<br />1 = [[Scheitelwert]],<br />2 = [[Spitze-Spitze-Wert]],<br />3 = [[Effektivwert]],<br />4 = [[Periode (Physik)|Periodendauer]]]]
<gallery>
2000px-Sine voltage.svg.png|1 = [[Scheitelwert]],<br />2 = [[Amplitude]],<br />3 = [[Effektivwert]],<br />4 = Periodendauer
</gallery>


Wird die Primärspule an eine sinusförmige Wechselspannung angeschlossen, werden die notwendigen Gleichungen komplizierter. Die Funktion eines Trafos kann (zu) einfach - '''und falsch!''' - so erklärt werden: Der durchfließende Wechselstrom I<sub>primär</sub> erzeugt im Inneren der Spule mit N<sub>primär</sub> Windungen und der Länge l  folgende magnetische Flussdichte:
Wird die Primärspule an eine sinusförmige Wechselspannung angeschlossen, werden die notwendigen Gleichungen komplizierter. Die Funktion eines Trafos kann (zu) einfach - '''und falsch!''' - so erklärt werden: Der durchfließende Wechselstrom I<sub>primär</sub> erzeugt im Inneren der Spule mit N<sub>primär</sub> Windungen und der Länge l  folgende magnetische Flussdichte:
Zeile 133: Zeile 118:
Das Ergebnis ist nicht ganz exakt, weil bei dieser Gleichung nicht die Sinusform der [[Netzspannung]] berücksichtigt ist. Die genaue Gleichung findet man [[Netztransformator#Mittelfrequenz-Transformatoren|hier]].
Das Ergebnis ist nicht ganz exakt, weil bei dieser Gleichung nicht die Sinusform der [[Netzspannung]] berücksichtigt ist. Die genaue Gleichung findet man [[Netztransformator#Mittelfrequenz-Transformatoren|hier]].


== Der Eisenkern ==
== Material ==
Die Verwendung eines [[Eisenkern]]s verringert zwar die Anzahl der notwendigen Windungen in beiden Spulen, bringt aber auch Nachteile mit: Der Eisenkern kann magnetisch [[Ferromagnetismus#S.C3.A4ttigung|gesättigt]] werden, dann wird die transformierte Wechselspannung verzerrt. Ferner entstehen im Eisen Wirbelstromverluste. Je tiefer die zu übertragende Frequenz ist, desto zwingender ist aber die Verwendung eines Eisenkerns. Das wird am Beispiel eines 50&nbsp;Hz-Trafos erläutert.
Die Verwendung eines [[Eisen]]kerns verringert zwar die Anzahl der notwendigen Windungen in beiden Spulen, bringt aber auch Nachteile mit: Der Eisenkern kann magnetisch gesättigt werden, dann wird die transformierte Wechselspannung verzerrt. Ferner entstehen [[Wirbelstrom|Wirbelströme]] und Leistungsverluste. Je tiefer die zu übertragende Frequenz ist, desto zwingender ist aber die Verwendung von Eisen. Das wird am Beispiel eines 50&nbsp;Hz-Trafos erläutert.


=== Netztrafo ''ohne'' Eisenkern ===
=== Netztrafo ''ohne'' Eisen ===
Der Eisen- oder Ferritkern im Trafo ist überflüssig, wenn  
Der Eisen- oder Ferritkern im Trafo ist überflüssig, wenn  
#der [[Impedanz|induktive Widerstand]] Z<sub>L</sub>&nbsp;=&nbsp;2πf·L der Primärspule bei der Betriebsfrequenz f so hoch ist, dass ein akzeptabler, das heißt nur geringer Leerlaufstrom fließt und
#der [[Impedanz|induktive Widerstand]] Z<sub>L</sub>&nbsp;=&nbsp;2πf·L der Primärspule bei der Betriebsfrequenz f so hoch ist, dass ein akzeptabler, das heißt nur geringer Leerlaufstrom fließt und
#der ohmsche Widerstand der Spule so gering ist, dass der Draht auch bei Höchstlast des Trafos, also bei maximalem Primärstrom, nicht überhitzt wird.
#der ohmsche Widerstand der Spule so gering ist, dass auch bei Höchstlast des Trafos, also bei maximalem Primärstrom, dieser nicht überhitzt wird.


Bei Frequenzen über 1&nbsp;MHz genügen meist weniger als 100 Windungen, um beide Forderungen zu erfüllen. Bei tiefer Frequenz treten unüberwindbare Probleme auf, wie folgendes Beispiel für einen Netztrafo von 100&nbsp;W und bescheidener Qualität zeigt: Für einen Leerlaufstrom von 100&nbsp;mA muss Z<sub>L</sub>&nbsp;=&nbsp;2300&nbsp;Ω und L&nbsp;=&nbsp;7,3&nbsp;H sein. Die erforderliche Windungszahl ''N'' der Primärspule kann man mit der [[Induktivität#Induktivität einer Zylinderspule|Gleichung]]
Bei Frequenzen über 1&nbsp;MHz genügen meist weniger als 100 Windungen, um beide Forderungen zu erfüllen. Bei tiefer Frequenz treten unüberwindbare Probleme auf, wie folgendes Beispiel für einen Netztrafo von 100&nbsp;W und bescheidener Qualität zeigt: Für einen Leerlaufstrom von 100&nbsp;mA muss Z<sub>L</sub>&nbsp;=&nbsp;2300&nbsp;Ω und L&nbsp;=&nbsp;7,3&nbsp;H sein. Die erforderliche Windungszahl ''N'' der Primärspule kann man mit der Induktivität einer Zylinderspule und der Gleichung


:<math>L = N^2 \cdot \frac{\mu_0 \mu_r A}{l}</math>
:<math>L = N^2 \cdot \frac{\mu_0 \mu_r A}{l}</math>


abschätzen und erhält ''ohne Eisenkern'' etwa 31000 Windungen mit einer Drahtlänge von 10&nbsp;km und einem Maximalwiderstand von 40&nbsp;Ω. Der notwendige Kupferdraht müsste einen Querschnitt von [[Elektrischer Widerstand#Berechnung des Widerstands eines Leiters|4,3&nbsp;mm²]] haben, der bei 31000 Windungen einen Wicklungsquerschnitt von 1300&nbsp;cm² einnimmt. In diese Primärspule müsste eine etwa gleich massive Sekundärspule „eingewoben“ werden, um eine gute magnetische Kopplung zu erzielen. Insgesamt ergibt sich ein Gesamtvolumen von etwa einem Kubikmeter bei 9000&nbsp;kg Masse.
abschätzen und erhält ''ohne Eisenkern'' etwa 31.000 Windungen mit einer Drahtlänge von 10&nbsp;km und einem Maximalwiderstand von 40&nbsp;Ω. Der notwendige Kupferdraht müsste einen Querschnitt von [[4,3&nbsp;mm²]] haben, der bei 31000 Windungen einen Wicklungsquerschnitt von 1300&nbsp;cm² einnimmt. In diese Primärspule müsste eine etwa gleich massive Sekundärspule „eingewoben“ werden, um eine gute magnetische Kopplung zu erzielen. Insgesamt ergibt sich ein Gesamtvolumen von etwa einem Kubikmeter bei 9.000&nbsp;kg Masse.


=== Netztrafo ''mit'' Eisenkern ===
=== Netztrafo ''mit'' Eisen ===
:''(siehe auch [[Netztransformator#Eisenkerntransformator|Eisenkerntransformator]])''
Dieser ohne Eisenkern realisierbare Trafo lässt sich mit einem ausreichend großen Kern aus Blechen auf handliche Werte verkleinern. Wegen der sehr hohen [[Permeabilitätszahl]] µ<sub>r</sub> von etwa 2000 genügen nun 700 Windungen für die Primärspule. An Stelle eines massiven Eisenkerns ''muss'' dünnes Trafo''blech'' eingesetzt werden, um die Wirbelströme im Kern gering zu halten.  
Dieser ohne Eisenkern kaum realisierbare Trafo lässt sich mit einem ausreichend großen Kern aus [[Dynamoblech]] auf handliche Werte verkleinern. Wegen der sehr hohen [[Permeabilitätszahl]] µ<sub>r</sub> von etwa 2000 genügen nun 700 Windungen für die Primärspule. An Stelle eines massiven Eisenkerns ''muss'' dünnes Trafo''blech'' eingesetzt werden, um die [[Wirbelstrom|Wirbelströme]] im Kern gering zu halten.  


Wählt man für den 100&nbsp;W-Trafo einen (zu) großen Eisenkern von 10&nbsp;kg, gibt es kein Problem mit der [[Sättigungsmagnetisierung]]. Je kleiner und leichter aber der Eisenkern sein soll, desto weniger [[Weiss-Bezirk]]e enthält er. Diese werden aber bereits bei geringeren Magnetfeldern komplett ausgerichtet - Sättigung ist erreicht. Das erzeugt eine Reihe von neuartigen Problemen: [[Verzerrungen]] der Sinusform des Leerlaufstromes, zusätzliche Wärme und massive Stromspitzen beim Einschalten.
Wählt man für den 100&nbsp;W-Trafo einen (zu) großen Eisenkern von 10&nbsp;kg, gibt es kein Problem mit der Sättigungsmagnetisierung. Je kleiner und leichter aber der Eisenkern sein soll, desto weniger [[Weiss-Bezirk]]e enthält er. Diese werden aber bereits bei geringeren Magnetfeldern komplett ausgerichtet - Sättigung ist erreicht. Das erzeugt eine Reihe von neuen Problemen: [[Verzerrungen]] der Sinusform des Leerlaufstromes, zusätzliche Wärme und massive Stromspitzen beim Einschalten.
[[Datei:Hysteresekurve krumm.svg|miniatur|250px|Ausschnitt der Hysteresekurve mit unterschiedlichen Stromdifferenzen bei konstanter &Phi;-Änderung an einem großen Trafo]]
[[Datei:2000px-Hysteresekurve krumm.svg.png|miniatur|250px|Ausschnitt der Hysteresekurve mit unterschiedlichen Stromdifferenzen bei konstanter &Phi;-Änderung an einem großen Trafo]]
Der Reihe nach: Bei Induktion dreht sich alles um die Gleichung ''U&nbsp;=&nbsp;dΦ/dt'' mit dem „Magnetfluss“ ''Φ&nbsp;&nbsp;=&nbsp;B·A''. Bei jedem Trafo ist die Spulenfläche A konstant, deshalb muss das Magnetfeld B geändert werden. B wird von der Primärspule erzeugt, dafür gilt die Gleichung ''B&nbsp;=&nbsp;μ<sub>r</sub>·μ<sub>0</sub>·H&nbsp;=&nbsp;μ<sub>r</sub>·μ<sub>0</sub>·J·N/l''. Vereint man diese Gleichungen und fasst dabei alle uninteressanten (konstanten) Faktoren in ''f'' zusammen, erhält man ''B&nbsp;=&nbsp;μ<sub>r</sub>·f·J''. Das sollte eine Gerade mit dem [[Geradengleichung|Steigungsfaktor]] ''μ<sub>r</sub>'' sein, die immer weiter ansteigt. Im Experiment gilt das nur für kleine Ströme, bei großen Strömen biegt die Gerade nach rechts ab. ''μ<sub>r</sub>'' ist leider ''nicht'' konstant, sondern wird mit steigendem Strom ''J'' immer kleiner, sinkt bis zum Wert 1. Im nebenstehenden Bild sieht man, dass man nicht immer den ''gleichen'' Stromzuwachs ''dJ'' benötigt, um den Magnetfluss Φ um den gleichen Betrag ''dΦ'' zu vergrößern. Genügt anfangs ein Stromzuwachs von 0,5&nbsp;A für eine gewisse Flussänderung, benötigt man bei höherem Gesamtstrom bereits 3&nbsp;A oder mehr, um die gleiche Flussänderung zu erzielen.
Der Reihe nach: Bei Induktion dreht sich alles um die Gleichung ''U&nbsp;=&nbsp;dΦ/dt'' mit dem „Magnetfluss“ ''Φ&nbsp;&nbsp;=&nbsp;B·A''. Bei jedem Trafo ist die Spulenfläche A konstant, deshalb muss das Magnetfeld B geändert werden. B wird von der Primärspule erzeugt, dafür gilt die Gleichung ''B&nbsp;=&nbsp;μ<sub>r</sub>·μ<sub>0</sub>·H&nbsp;=&nbsp;μ<sub>r</sub>·μ<sub>0</sub>·J·N/l''. Vereint man diese Gleichungen und fasst dabei alle uninteressanten (konstanten) Faktoren in ''f'' zusammen, erhält man ''B&nbsp;=&nbsp;μ<sub>r</sub>·f·J''. Das sollte eine Gerade mit dem [[Geradengleichung|Steigungsfaktor]] ''μ<sub>r</sub>'' sein, die immer weiter ansteigt. Im Experiment gilt das nur für kleine Ströme, bei großen Strömen biegt die Gerade nach rechts ab. ''μ<sub>r</sub>'' ist leider ''nicht'' konstant, sondern wird mit steigendem Strom ''J'' immer kleiner, sinkt bis zum Wert 1. Im nebenstehenden Bild sieht man, dass man nicht immer den ''gleichen'' Stromzuwachs ''dJ'' benötigt, um den Magnetfluss Φ um den gleichen Betrag ''dΦ'' zu vergrößern. Genügt anfangs ein Stromzuwachs von 0,5&nbsp;A für eine gewisse Flussänderung, benötigt man bei höherem Gesamtstrom bereits 3&nbsp;A oder mehr, um die gleiche Flussänderung zu erzielen.


An dieser Stelle gibt es natürliche Grenzen: Jedes Stück Eisen besteht aus endlich vielen Atomen, die nur eine gewisse Anzahl [[Weiss-Bezirk]]e bilden können. Deren Orientierung zeigt ''ohne'' externes Magnetfeld - statistisch verteilt - in alle Richtungen, das Eisen ist [[Entmagnetisierung|entmagnetisiert]]. Mit zunehmendem Strom durch die Primärspule werden immer noch mehr Bezirke parallel zur Spulenachse ausgerichtet und die Kurve steigt steil an. Wenn aber fast alle orientiert sind, hilft auch kein weiterer Stromanstieg, um noch mehr in diese Richtung zu zwingen, denn es sind ja keine mehr da. Der Magnetfluss kann kaum noch steigen, die Kurve wird flacher. Bei kornorientiertem [[Dynamoblech]] geht man bis zu Flussdichten ''B''&nbsp;=&nbsp;1,6…1,75&nbsp;T; Sättigung tritt ein ab 2,03&nbsp;[[Tesla (Einheit)|Tesla]].
An dieser Stelle gibt es natürliche Grenzen: Jedes Stück Eisen besteht aus endlich vielen Atomen, die nur eine gewisse Anzahl Weiss-Bezirke bilden können. Deren Orientierung zeigt ''ohne'' externes Magnetfeld - statistisch verteilt - in alle Richtungen, das Eisen ist entmagnetisiert. Mit zunehmendem Strom durch die Primärspule werden immer noch mehr Bezirke parallel zur Spulenachse ausgerichtet und die Kurve steigt steil an. Wenn aber fast alle orientiert sind, hilft auch kein weiterer Stromanstieg, um noch mehr in diese Richtung zu zwingen, denn es sind ja keine mehr da. Der Magnetfluss kann kaum noch steigen, die Kurve wird flacher. Bei kornorientiertem Dynamoblech geht man bis zu Flussdichten ''B''&nbsp;=&nbsp;1,6…1,75&nbsp;T; Sättigung tritt ein ab 2,03&nbsp;[[Tesla (Einheit)|Tesla]].


Für den Primärstrom hat das katastrophale Folgen: Sobald die Hysteresekurve flach wird, kann Φ kaum noch ansteigen, die Änderung ''dΦ'' wird Null. Da deshalb die Gegenspannung U<sub>induziert</sub> auch verschwindet, steigt der Primärstrom auf extreme Werte ([[Einschalten des Transformators]]), bis die Sicherung abschaltet. Ein gesättigter Kern hat die gleiche Wirkung wie Luft, nämlich keine. Der Strom wird dann nur durch den ohmschen Widerstand der Primärspule begrenzt.
Für den Primärstrom hat das katastrophale Folgen: Sobald die Hysteresekurve flach wird, kann Φ kaum noch ansteigen, die Änderung ''dΦ'' wird Null. Da deshalb die Gegenspannung U<sub>induziert</sub> auch verschwindet, steigt der Primärstrom auf extreme Werte beim Einschalten des Transformators bis die Sicherung abschaltet. Ein gesättigter Kern hat die gleiche Wirkung wie Luft, nämlich keine. Der Strom wird dann nur durch den ohmschen Widerstand der Primärspule begrenzt.


=== Der Magnetisierungsstrom ===
=== Der Magnetisierungsstrom ===
[[Datei:Magnetisierungsstrom.gif|miniatur|Verlauf des Magnetisierungsstromes bei unterschiedlichen Eisenkerngrößen, desselben Kerntyps bei gegebenem Magnetfluss]]
[[Datei:Magnetisierungsstrom.gif|miniatur|Verlauf des Magnetisierungsstromes bei unterschiedlichen Eisenkerngrößen, desselben Kerntyps bei gegebenem Magnetfluss]]
Der Querschnitt A des Eisenkerns ist ein Maß dafür, wie viele [[Weiss-Bezirk]]e vom gegebenen Magnetfeld der Primärspule ausgerichtet werden können. Der Kern wird im Bild verkleinert oder vergrößert. Sind alle Weiß-Bezirke parallel zur Spulenachse orientiert ([[Ferromagnetismus#S.C3.A4ttigung|magnetische Sättigung]]), kann sich Φ nicht mehr ändern, die [[Selbstinduktion]] kann keine Gegenspannung mehr induzieren und der Strom durch die Primärspule steigt steil an (rote Kurve im Bild). Gleichzeitig strebt die Spannung in der Sekundärspule gegen Null - das ist unerwünscht! In diesem Moment wird besonders viel Energie aus dem Stromnetz entnommen und wenig an die Sekundärspule übertragen. Als Folge kann die Primärspule durchbrennen.
Der Querschnitt A des Eisenkerns ist ein Maß dafür, wie viele [[Weiss-Bezirk]]e vom gegebenen Magnetfeld der Primärspule ausgerichtet werden können. Der Kern wird im Bild verkleinert oder vergrößert. Sind alle Weiss-Bezirke parallel zur Spulenachse orientiert ([[Ferromagnetismus#S.C3.A4ttigung|magnetische Sättigung]]), kann sich Φ nicht mehr ändern, die [[Selbstinduktion]] kann keine Gegenspannung mehr induzieren und der Strom durch die Primärspule steigt steil an (rote Kurve im Bild). Gleichzeitig strebt die Spannung in der Sekundärspule gegen Null - das ist unerwünscht! In diesem Moment wird besonders viel Energie aus dem Stromnetz entnommen und wenig an die Sekundärspule übertragen. Als Folge kann die Primärspule durchbrennen.
 
Übliche Gegenmittel: Entweder den Eisenkern vergrößern oder die Frequenz erhöhen oder beides oder mehr Windungen draufpacken. Wer jemals einen 300&nbsp;W-Netztrafo gehoben und mit dem Gewicht eines [[#Getaktete Netzteile / Schaltnetzteil|Computernetzteils]] gleicher Leistung verglichen hat, weiß, was man mit ausreichend hoher Frequenz von etwa 50&nbsp;kHz erreichen kann. Die Begründung steckt wieder in der Gleichung für die Windungsspannung.
 
:<math>U_{ind}=\frac{\mathrm{d}B}{\mathrm{d}t}\cdot A=\frac{\mathrm{d}B\cdot A}{\mathrm{d}t}=
\frac{\mathrm{d}B \cdot 0,1\cdot A}{0,1\cdot\mathrm{d}t}=\frac{\mathrm{d}B\cdot A_1}{\mathrm{d}t_1}</math>
 
Wird die Frequenz verzehnfacht, dauert eine Schwingung nur noch 0,1·''dt''. Verringert man die Spulenfläche A ebenfalls um den Faktor 10 auf A<sub>1</sub>, entsteht die gleiche Induktionsspannung. Wenn aber die Eisenfläche auf 10 % verringert wird, schrumpfen bei Einhaltung der Proportionen alle Abmessungen und sowohl Volumen als auch Masse des Trafos verringern sich auf 3,2 % des ursprünglichen Wertes. Aus diesem Grund wurde für das Bordnetz von Flugzeugen die Frequenz 400&nbsp;Hz gewählt. Umgekehrt benötigen Trafos für [[Bahnstrom]] bei der Frequenz 16,7&nbsp;Hz die dreifache Eisenfläche und die 5,2-fache Masse im Vergleich zum Betrieb mit 50&nbsp;Hz.  


Zu speziellen Problemen beim Einschalten von Transformatoren siehe [[Einschalten des Transformators]]
Übliche Gegenmittel: Entweder den Eisenkern vergrößern oder die Frequenz erhöhen oder beides oder mehr Windungen draufpacken. Wird die Frequenz verzehnfacht, dauert eine Schwingung nur noch 0,1·''dt''. Verringert man die Spulenfläche A ebenfalls um den Faktor 10 auf A<sub>1</sub>, entsteht die gleiche Induktionsspannung. Wenn aber die Eisenfläche auf 10 % verringert wird, schrumpfen bei Einhaltung der Proportionen alle Abmessungen und sowohl Volumen als auch Masse des Trafos verringern sich auf 3,2 % des ursprünglichen Wertes. Aus diesem Grund wurde für das Bordnetz von Flugzeugen die Frequenz 400&nbsp;Hz gewählt. Umgekehrt benötigen Trafos für [[Bahnstrom]] bei der Frequenz 16,7&nbsp;Hz die dreifache Eisenfläche und die 5,2-fache Masse im Vergleich zum Betrieb mit 50&nbsp;Hz; die Frequenz ist hier durch die Umdrehungsgeschwindigkeit der [[Generator]]en vorgegeben.


=== Streufluss ===
=== Streufluss ===
[[Datei:Streufluss.png|miniatur|Linker Teil eines aufgeschnittenen Streufeldtrafos]]
[[Datei:Streufluss.png|miniatur|Linker Teil eines aufgeschnittenen Streufeldtrafos]]
[[Datei:Streufluss 1.png|miniatur|links|Streufluss eines Trafokerns]]
[[Datei:Streufluss 1.png|miniatur|links|Streufluss eines Trafokerns]]
Bei einem idealen Transformator würden alle Linien des [[Magnetfluss]]es, die von der Primärspule erzeugt werden, auch durch die Sekundärspule laufen. Bei einem [[Theorie idealer Übertrager#Reale Transformatoren|realen Trafo]] schlagen einige Magnetfeldlinien andere Wege ein, insbesondere bei geringer [[Permeabilität (Magnetismus)|Permeabilität]] des Magnetwerkstoffes und hoher Belastung „weichen“ sie der Sekundärwicklung aus. Das erzeugt unerwünschte Magnetfelder in der Umgebung, die in manchen Geräten wie [[Oszilloskop]]en sehr störend sein können und besondere [[Abschirmung (Elektrotechnik)#Technische Maßnahmen zur Abschirmung niederfrequenter Magnetfelder|Abschirmungen]] verlangen. Außerdem verringern sie den Wirkungsgrad des Trafos und sorgen dafür, dass die Gleichung N<sub>p</sub>/N<sub>s</sub>=U<sub>p</sub>/U<sub>s</sub> nicht genau gilt. Abhilfe sind geringe Abstände zwischen Wicklung und Eisenkern sowie Vermeiden von räumlich getrennten Spulen.
Bei einem idealen Transformator würden alle Linien des [[Magnetfluss]]es, die von der Primärspule erzeugt werden, auch durch die Sekundärspule laufen. Bei einem realen Trafo schlagen einige Magnetfeldlinien andere Wege ein, insbesondere bei geringer [[Permeabilität (Magnetismus)|Permeabilität]] des Magnetwerkstoffes und hoher Belastung „weichen“ sie der Sekundärwicklung aus. Das erzeugt unerwünschte Magnetfelder in der Umgebung, die in manchen Geräten wie [[Oszilloskop]]en sehr störend sein können und besondere technische Maßnahmen zur Abschirmung niederfrequenter Magnetfelder verlangen. Außerdem verringern sie den Wirkungsgrad des Trafos und sorgen dafür, dass die Gleichung N<sub>p</sub>/N<sub>s</sub>=U<sub>p</sub>/U<sub>s</sub> nicht genau gilt. Abhilfe sind geringe Abstände zwischen Wicklung und Eisenkern sowie Vermeiden von räumlich getrennten Spulen.


Es gibt aber Einsatzbereiche, bei denen das Streufeld erwünscht ist, wie [[Streufeldtransformator]]en beim [[Schweißen]] oder als [[Vorschaltgerät]]e für [[Leuchtstoffröhre]]n. In diesen Fällen werden gezielt Luftspalte eingebaut, wie im nebenstehenden Bild zu sehen ist. Der Streufeldtransformator vereint die Funktion eines Transformators (Spannungstransformation und galvanische Trennung) und einer strombegrenzenden Drossel in einem Bauteil.
Es gibt aber Einsatzbereiche, bei denen das Streufeld erwünscht ist, wie der [[Streufeldtransformator]]en beim [[Schweißen]] oder als [[Vorschaltgerät]]e für [[Leuchtstoffröhre]]n. In diesen Fällen werden gezielt Luftspalte eingebaut, wie im nebenstehenden Bild zu sehen ist. Der Streufeldtransformator vereint die Funktion eines Transformators (Spannungstransformation und galvanische Trennung) und einer strombegrenzenden Drossel in einem Bauteil.


=== Laminierte Blechpakete ===
=== Laminierte Blechpakete ===
[[Datei:Laminierte Bleche.png|miniatur|links|Wirbelströme im Eisenblock (oben) und in laminierten Blechen (unten)]]
<gallery>Laminierte Bleche.png|miniatur|links|Wirbelströme im Eisenblock (oben) und in laminierten Blechen (unten)</gallery>
Ein massiver Eisenkern würde in der Primärwicklung wie eine kurzgeschlossene Windung wirken, in der ein großer Strom induziert wird. Obwohl die [[Leitfähigkeit]] von Eisen nicht besonders gut ist, würde darin sehr viel [[Wärme]]energie entstehen. Das ist beim [[Induktionskochfeld]] und [[Induktionsofen]] erwünscht, muss aber beim Trafo vermieden werden. Aus diesem Grund wird der Kern eines Trafos aus dünnen, voneinander isolierten [[Dynamoblech]]en zusammengesetzt, damit die Fläche ''A'' quer zum Magnetfluss Φ gering wird. Die Heizleistung eines Blechstreifens berechnet sich nach der Formel
Ein massiver Eisenkern würde in der Primärwicklung wie eine kurzgeschlossene Windung wirken, in der ein großer Strom induziert wird. Obwohl die [[Leitfähigkeit]] von Eisen nicht besonders gut ist, würde darin sehr viel [[Wärme]]energie entstehen. Das ist beim [[Induktionskochfeld]] und [[Induktionsofen]] erwünscht, muss aber beim Trafo vermieden werden. Aus diesem Grund wird der Kern eines Trafos aus dünnen, voneinander isolierten Dynamoblechen zusammengesetzt, damit die Fläche ''A'' quer zum Magnetfluss Φ gering wird. Die Heizleistung eines Blechstreifens berechnet sich nach der Formel


:<math>P = \frac{U_{ind}^2}{R}</math>
:<math>P = \frac{U_{ind}^2}{R}</math>
Zeile 191: Zeile 168:
folgt, dass der Querschnitt ''A'' klein werden muss. Eine Halbierung der Blechdicke bei sonst unveränderten Bedingungen verringert die Heizleistung ''P'' auf 25 %.
folgt, dass der Querschnitt ''A'' klein werden muss. Eine Halbierung der Blechdicke bei sonst unveränderten Bedingungen verringert die Heizleistung ''P'' auf 25 %.


Bei hoher Frequenz wird die Zeit ''dt'' für eine Schwingung immer kleiner. Verdoppelt man die Betriebsfrequenz des Trafos bei unverändertem Blechquerschnitt ''A'', verdoppelt sich auch ''U<sub>ind</sub>'' und die Heizleistung steigt um den Faktor vier. Dieser enorme Anstieg lässt sich nur durch dünneres Blech kompensieren. Kerne von NF-Trafos, wie sie beispielsweise in [[Röhrenverstärker]]n benötigt werden, sind deshalb immer aus besonders dünnen Eisen-„Folien“ aufgebaut. Das reicht bei noch höheren Frequenzen nicht aus, dort geht man zu [[Ferritkern]]en oder [[Ringkern]]en aus gepresstem Eisenpulver über. Dadurch wird zwar die Querschnittsfläche ''A'' jedes [[Kristallit]]s sehr klein, der gegenseitige Abstand verkleinert aber auch den Maximalwert von ''B''. (''siehe auch [[Wirbelstrom#Nachteilige Wirkung von Wirbelströmen]])''
Bei hoher Frequenz wird die Zeit ''dt'' für eine Schwingung immer kleiner. Verdoppelt man die Betriebsfrequenz des Trafos bei unverändertem Blechquerschnitt ''A'', verdoppelt sich auch ''U<sub>ind</sub>'' und die Heizleistung steigt um den Faktor vier. Dieser enorme Anstieg lässt sich nur durch dünneres Blech kompensieren. Kerne von NF-Trafos, wie sie beispielsweise in [[Röhrenverstärker]]n benötigt werden, sind deshalb immer aus besonders dünnen Eisen-„Folien“ aufgebaut. Das reicht bei noch höheren Frequenzen nicht aus, dort geht man zu [[Ferritkern]]en oder [[Ringkern]]en aus gepresstem Eisenpulver über. Dadurch wird zwar die Querschnittsfläche ''A'' jedes [[Kristallit]]s sehr klein, der gegenseitige Abstand verkleinert aber auch den Maximalwert von ''B''.


== Widerstandstransformation ==
== Widerstandstransformation ==
Zeile 215: Zeile 192:
== Einzelnachweise ==
== Einzelnachweise ==
<references />
<references />
== Siehe auch ==
*[[Resonanztransformator]]
*[[Streufeldtransformator]]


== Weblinks ==
== Weblinks ==
*[http://www.physik.uni-muenchen.de/leifiphysik/web_ph10/materialseiten/m12_transformator.htm Versuche und Aufgaben zum Transformator]
*


[[Kategorie:Theoretische Elektrotechnik]]
[[Kategorie:Theoretische Elektrotechnik]]
[[Kategorie:Lesenswerte Löschdiskussion]]
[[Kategorie:Transformator]]
[[Kategorie:Transformator]]


== Init-Quelle ==
{{PPA-Venus}}
Entnommen aus der:
*[https://de.wikipedia.org/wiki/Wikipedia:L%C3%B6schkandidaten/2._Juni_2009#Transformator_(Wirkungsweise_und_Physik)_jetzt_Transformator_an_unterschiedlichen_Kurvenformen Löschdiskussion]
[http://de.wikipedia.org/wiki/Transformator_(Wirkungsweise_und_Physik) Wikipedia]
*Autoren: Ben-Oni, Aka, Herbertweidner, emeko, Schlurcher, Wdwd, Frank Murmann, Cepheiden, Hydrauliker, Jens Liebenau, Mr.checker, Ot, Avoided, Staro1, Bücherwürmlein, Pittimann, NebMaatRe, KatBot, Reseka, Der ohne Benutzername, Pyxlyst , Dealerofsalvation, Neon02
 
Autoren: Ben-Oni, Aka, Herbertweidner, Schlurcher, Wdwd, Frank Murmann, Cepheiden, Hydrauliker, Jens Liebenau, Mr.checker, Ot, Avoided, Staro1, Bücherwürmlein, Pittimann, NebMaatRe, KatBot, Reseka, Der ohne Benutzername, Pyxlyst , Dealerofsalvation, Neon02

Aktuelle Version vom 23. April 2025, 19:30 Uhr

Fehler beim Erstellen des Vorschaubildes: Datei fehlt Achtung! Die Seite wird gerade bearbeitet.
Dieser Artikel oder Abschnitt wird gerade bearbeitet. Um Bearbeitungskonflikte zu vermeiden, warte bitte mit Änderungen, bis diese Markierung entfernt ist. Eine Begründung steht auf der Diskussionsseite, dort kannst du nachfragen oder wende dich an den Bearbeiter auf seiner Diskussionsseite.

Ein Transformator kann unterschiedlich eingesetzt werden. Dabei ist die Wirkungsweise durch die physikalischen Gesetze der Elektrizität je nach Verwendung unterschiedlich. Er kann primärseitig mit Wechselspannung beliebiger Kurvenform und – bei geeigneter Dimensionierung in Schaltreglern – kurzzeitig sogar mit Gleichspannung betrieben werden. Sekundärseitig können erhebliche Abweichungen der Kurvenform auftreten. Nachfolgend werden die unterschiedlichen Wirkungen, auch in Abhängigkeit von der Frequenz dargestellt.

Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Transformator mit physikalischen Bezeichnungen und Symbolen

Primär- und Sekundärwicklung

Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Prinzip eines zweischenkligen Trafos

Die Primärwicklung eines Trafos mit Nprimär Windungen und der Länge l wird vom Primärstrom Iprimär durchflossen, wodurch ein Magnetfeld erzeugt wird, das im Inneren der Spule besonders stark ist. Dieses wird bestimmt durch μ0 (die Magnetische Feldkonstante) und μr (die Permeabilität) des Spulenkerns. Wenn sich dieses Magnetfeld nicht ändert, wird auch die Spannung nicht verändert. Wenn es sich ändert, wird in einer oder mehreren Sekundärspule(n) ebenso wie in der Primärspule eine Wechselspannung erzeugt, die proportional zur Windungszahl steigt. Die Kurvenform der Sekundärspannung kann dabei von der Kurvenform der Primärspannung erheblich abweichen.

Es gibt unterschiedliche Möglichkeiten, elektrische Spannung durch Elektromagnetische Induktion zu erzeugen. Für den Betrag der induzierten Spannung kommt es nur darauf an, wie schnell sich Ip ändert.

  • Der Quotient dIp/dt (die zeitliche Änderung) muss groß sein, denn die Zeitdifferenz dt steht im Nenner. Das hat eine weitreichende Auswirkung: Je kleiner dt ist, also je schneller sich der Strom ändert, desto größer ist die induzierte Spannung. Das wird in Impulstrafos wie Zündspule und Funkeninduktor oder beim Elektrozaun ausgenutzt, um durch schnelles Abschalten des Stromes Hochspannung zu erzeugen. Bei Betrieb mit Gleichstrom lässt sich diese Hochspannung mit einer parallel geschalteten Freilaufdiode verhindern, wenn sie nicht gewünscht ist. Zum Beispiel beim Ausschalten von Schützspulen. Der Stromverlauf beim Einschalten einer Spule mit einer Gleichspannung wird hier erklärt.
  • Der Materialparameter μr hat in Luft den Wert 1. Das ist problemlos, sorgt aber bei langsamen Stromänderungen für geringe induzierte Spannung.
  • Falls (bei tiefen Frequenzen) die Primärspule einen Eisenkern besitzt, ist μr viel größer, aber leider nicht konstant und kann zwischen etwa 50.000 und 1 schwanken. Das ist Ursache für eine Reihe von Problemen, die bei luftgefüllten Trafos nicht existieren.
Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Häufige Formen von Wechselspannung

Beispiel: Das Magnetfeld ändere sich in 2 ms um 0,3 T, dann ist dB/dt = 150 T/s. Mit einer richtig orientierten Spulenfläche von 6 cm² erhält man 90 mV pro Windung.

Ein Trafo kann die Kurvenform und/oder die Phase von Wechselstrom verändern, was jedoch meist nicht erwünscht ist. Um dieses Übertragungsverhalten zu untersuchhen, kann man die Primärspule an einen Funktionsgenerator legen und Kurvenformen wie Dreieckspannung, Rechteckspannung oder sinusförmigen Wechselspannung wählen.

Übertragungsverhalten

Das Übertragungsverhalten eines Trafos lässt sich untersuchen, wenn man statt der üblichen sinusförmigen Wechselspannung des Stromnetzes unterschiedliche Spannungen aus einem Funktionsgenerator anlegt. Dabei sind zwei Fälle zu unterscheiden: Bei einer bestimmten Frequenz ist der induktive Widerstand der Primärspule

  • viel kleiner als ihr ohmscher Widerstand; dann ist die Phasenverschiebung zwischen Strom und Spannung fast Null und es gelten die Proportionalitäten: Uprimär ≈ Iprimär ≈ B ≈ Φ;
  • viel größer als der ohmsche Widerstand. Dann besteht zwischen Strom und Spannung eine Phasenverschiebung.

Betrieb mit eingeprägtem Strom

Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Der Trafo differenziert:
Input = Dreieckstrom,
Output = Rechteckspannung

Die Primärspule wird mit eingeprägtem Strom betrieben, wenn die elektrische Spannung über einen ausreichend großen Vorwiderstand eingespeist wird, der mindestens zehnmal größer ist als die Impedanz der Primärspule. Der Vorwiderstand kann auch der ohmsche Widerstand der Spule sein. Diese Bedingung wird von jedem Trafo erfüllt, wenn die Frequenz nur ausreichend tief ist, weil der induktive Widerstand proportional zur Frequenz sinkt.

Hier sind Spannung Uprimär und Strom Iprimär aus steigenden und fallenden Geradenstücken zusammengesetzt (blaue Dreiecksfunktion im Bild links). Weil die erste Ableitung jeder Geraden einen konstanten Wert besitzt, gilt in Verbindung mit der Proportion Uprimär ≈ Iprimär ≈ B ≈ Φ die einfache Aussage dΦ/dt = ±konstant

Die sekundärseitig induzierte Spannung kann also nur zwischen zwei Werten wechseln. Sie ist genau so lange konstant, wie die Primärspannung steigt und ändert ihr Vorzeichen, wenn die Primärspannung fällt, wie im nebenstehenden Bild rot eingezeichnet ist. Die Übergänge erfolgen schlagartig. Mathematisch gesehen, differenziert diese Anordnung die angebotene Dreieckspannung bzw. den Strom (beide sind über U = R·I verknüpft). Wenn die Dreieckspannung schneller steigen als fallen würde (asymmetrische Kippschwingung), wäre während der Steigzeit auch Usek deutlich größer.

Beim Vergleich der beiden Oszillogramme erkennt man, was ein stückweise konstanter Primärstrom bewirkt: Sobald sich Iprimär nicht ändert, weil die Spitzen der Dreiecke abgeschnitten werden, kann der Eisenkern zwar magnetisiert sein, das B-Feld ändert sich aber nicht und deshalb wird in der Sekundärspule keine Spannung induziert. Während der Zeitspannen, in denen die Dreieckspannung flache Stellen hat, zeigt das Oszillogramm null Volt an.

Falls der Trafo einen Eisenkern besitzt, kann dieser bei großen Strömen magnetisch gesättigt werden. Dann sinkt μr von sehr hohen Werten um 5000 auf nur 1. Hinzu kommt, dass die Flussdichte B kaum noch zunehmen kann (dB wird Null), auch wenn der Primärstrom stark ansteigt. Das hat die gleiche Konsequenz wie ein konstanter Strom: Die induzierte Sekundärspannung wird Null.

Die Eigenschaft, dass jeder Transformator Iprimär differenziert, bewirkt beim Stromwandler und bei der Rogowskispule, dass Gleichströme nicht gemessen werden können.

Betrieb mit eingeprägter Spannung

Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Transformator mit eingeprägter Dreieckspannung, sekundär ebenfalls Dreieckspannung

Die Primärspule wird mit eingeprägter]] Spannung betrieben, wenn die Impedanz der Spule mindestens zehnmal größer ist als ihr ohmscher Widerstand. Das kann bei jedem Trafo durch ausreichend hohe Frequenz erreicht werden. Bei tiefen Frequenzen wählt man meist einen zusätzlichen Eisenkern mit großem μr, um die Induktivität zu vergrößern. Uprimär wird dann mit unveränderter Kurvenform übertragen, solange der Kern nicht in Sättigung gerät. Die Begründung:

  • Die angelegte Wechselspannung Uprimär lässt in der Primärspule einen Wechselstrom fließen, der im Eisenkern ein magnetisches Wechselfeld erzeugt.
  • Dieses induziert in allen Spulen des Trafos, also auch in der Primärspule eine „Gegenspannung“ Uinduziert, die fast so groß ist wie die angelegte Wechselspannung und diese weitgehend kompensiert (Lenzsche Regel). Als „Antriebsspannung“ für den Primärstrom steht nur die geringe Differenzspannung Uprimär - Uinduziert zur Verfügung, die am ohmschen Widerstand des Spulendrahtes abfällt. Deshalb ist der Primärstrom so gering.
  • Wäre die Gegenspannung zu gering, würde die Differenzspannung Uprimär - Uinduziert sofort größer werden und höheren Primärstrom fließen lassen. Dadurch würde aber das Magnetfeld ansteigen und mehr Gegenspannung erzeugen. Dieses Verhalten nennt man dynamisches stabiles Gleichgewicht. Es sorgt in jedem Moment dafür, dass die induzierte Spannung „parallel“ zur angelegten Wechselspannung mitläuft und pro Windung in jeder Spule den gleichen Wert hat. Deshalb gilt unabhängig von der Kurvenform:
UpUs=npns

Betrieb mit Frequenzgemisch

Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Der Abstand f2 bis f1 heißt Bandbreite

Breitbandtrafos – wie Audiotransformatoren – übertragen ein Frequenzgemisch von etwas 50 Hz bis 20 kHz. Die Dreiecks- und Rechteckspannung (auch als Sägezahnspannung bezeichnet) ist aus der Sicht der Tontechik auch ein Frequenzgemisch. Dabei ändert sich die Impedanz der Primärspule im gleichen Verhältnis 20000/50 = 400, was dazu führt, dass bei tiefen Frequenzen der ohmsche und bei hohen Frequenzen der induktive Anteil am Gesamtwiderstand überwiegt.

  • Bei tiefen Frequenzen kann eine Phasenverschiebung bis 90° zwischen Ein- und Ausgangsspannung auftreten, zum anderen sinkt die induzierte Sekundärspannung proportional zur Frequenz. Für tiefe Frequenzen muss die Primärspule möglichst viele Windungen haben, damit die Impedanz ausreichend groß bleibt.
  • Bei mittleren Frequenzen überträgt der Trafo die Kurvenform 1:1, wenn mit eingeprägter Spannung gearbeitet wird. Die Phasenverschiebung beträgt dann 0°.
  • Bei hohen Frequenzen macht sich immer stärker der Einfluss der Wicklungskapazität bemerkbar, der den Wechselstrom nicht durch die Spule, sondern zunehmend durch die parallel liegende, unvermeidbare Kapazität fließen lässt. Zusammen können beide einen Schwingkreis bilden, der einen schmalen Frequenzbereich bevorzugt. Dieser liegt umso tiefer, je mehr Windungen die Spule besitzt. Es treten wieder deutliche Phasenverschiebungen auf.

Betrieb mit einer Rechteckspannung

Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Sättigungsmagnetisierung eines Eisenkerns. rot=Primärspannung, blau=Sekundärspannung
Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Prinzip des Sperrwandlers
Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Spannungen und Ströme beim Sperrwandler

In Schaltnetzteilen werden Trafos immer mit rechteckförmigen Spannungsverläufen versorgt, weil dadurch die Verlustleistung in den elektronischen Schaltern (Transistoren) sehr gering sind. Die Spannung wird von Kondensatoren mit geringen Innenwiderständen bereitgestellt, deshalb liegt hier Betrieb mit eingeprägter Spannung vor. Wenn durch die Primärspule vorher kein Strom geflossen ist, steigt dieser nach dem Einschalten immer nach der gleichen Gesetzmäßigkeit an, die im nebenstehenden Bild dargestellt ist: Zunächst schnell, dann langsamer und schließlich strebt der Strom dem Grenzwert Uprim/R zu, wobei R der ohmsche Widerstand der Primärwicklung ist. Dann ist das Magnetfeld zwar sehr stark, es ändert sich aber nicht mehr und deshalb sinkt die induzierte Spannung auf Null. Weit vorher muss der Strom abgeschaltet werden, um den Transistor nicht zu gefährden und den Eisenkern nicht in die Sättigungsmagnetisierung zu treiben.

Im nebenstehenden Bild wird deutlich vor dem Zeitpunkt, an dem die rot dargestellte Wechselspannung periodisch umgepolt wird, der Eisenkern gesättigt. Obwohl die Spannung weiterhin anliegt und der Primärstrom stark ansteigt (nicht aufgezeichnet), wird die induzierte Spannung (blau dargestellt) zu Null, weil die Änderung des Magnetfeldes auch Null wird. Bei höherer Frequenz und entsprechend kürzerer Einschaltdauer wäre dieser Effekt nicht aufgetreten. Die Spannungszeitfläche der angelegten Spannungshalbwelle ist hier größer als die für welche der Trafo ausgelegt ist. (Windungszahl und oder Eisenfläche sind zu klein.)

Als Beispiel wird angenommen, dass als Primärspule zehn Windungen dicker Kupferdraht auf einen Ferrit-Kern mit der Kennzahl AL = 1200 nH gewickelt werden. Diese Spule hat die Induktivität 120 µH und wird über einen Schalttransistor Q mit einem Kondensator verbunden, der auf 300 V aufgeladen ist. Mit einem Gesamtwiderstand der Reihenschaltung dieser Bauelemente von 1 Ω ergibt sich die Zeitkonstante T = 120 µs. In dieser Zeit steigt der Strom fast linear an und erreicht 63,2 % des Endwertes 300 A. Wenn der Schalttransistor 19 A aushält, darf er also nur 12 µs lang bis t1 eingeschaltet sein. Während dieser Zeit entnimmt er dem Kondensator die Energie E = 0,5·L·J² = 22 mWs.

Sperrwandler

Diese Energie wird beim Sperrwandler während der Einschaltphase 0...t1 als magnetische Feldenergie in der Drossel mit Luftspalt gespeichert und nach dem Abschalten des Transistors ähnlich wie bei einem Funkeninduktor als Spannungsimpuls an der Sekundärspule abgenommen. In Netzgeräten oder bei Elektronenblitzgeräten lädt man mit dieser Energie einen Kondensator C (rechts im Bild) auf. Dabei gibt es kein festes Spannungsübersetzungsverhältnis nach der Form Up/Us = Np/Ns, sondern die Sekundärspannung springt schlagartig auf auf die Spannung, die der Kondensator (noch) hat, weil die Primärspannung ebenfalls nicht in ihrer Höhe definiert ist nach dem Abschalten. Dadurch wird der Gleichrichter D leitend und es fließt von t1 bis t2 Strom, der den Kondensator C auflädt. Wenn die gespeicherte magnetische Energie auf den Kondensator übertragen wurde, bricht die Sekundärspannung und die Primärspannung zusammen und nach einer kurzen Pause kann auf die Primärspule ab T der nächste Stromimpuls gegeben werden. Wichtig ist es zu wissen, dass die zu übertragende Energie nur im Luftspalt zwischen gespeichert wird, (Spannung mal Strom mal Zeit), weshalb solche Übertrager alle einen definierten Luftspalt haben müssen.

Die Energiezufuhr bewirkt beim Kondensator eine Spannungserhöhung, die sich mit der Gleichung E = 0,5·C·U² berechnen lässt. Durch Differenzieren erhält man ΔE = C·U·ΔU. Wenn ein 2000 µF-Kondensator (noch) auf 12 V aufgeladen ist, erzeugt der nächste Energieimpuls von 22 mWs einen Spannunganstieg um ΔU = 0,9 V.

Im Dauerbetrieb muss der mittlere Magnetische Fluss Φ konstant sein, deshalb muss die Spannungszeitfläche zwischen 0 und t1 genauso groß sein wie zwischen t1 und t2. Zunächst wird die Primärspule über den Schalttransistor t1 = 12 µs lang an 300 V gelegt, anschließend liefert die Sekundärspule während der Zeitdauer t2-t1 die Spannung 13 V an den 2000 µF-Kondensator (Spannungsverlust am Gleichrichter nicht vergessen!). Daraus folgt

300V12μs=13V(t2t1)

mit der Lösung t2-t1 = 280 µs. Wegen I·(t2-t1) = C·ΔU lässt sich der mittlere Ladestrom 6,5 A des Kondensators ermitteln. Wie im Bild zu sehen ist, sinkt er in diesem Zeitraum vom Anfangswert 13 A etwa linear auf Null.

Beim Sperrwandler gilt - wie bei jedem Trafo - dass die induzierte Spannung pro Windung in allen Wicklungen gleich ist. (Auch die Kurvenform der Spannung.) Wenn im Zeitraum t2-t1 an der Sekundärspule 13 V anliegt, erscheint diese Spannung mit dem entsprechenden Transformationsverhältnis ü = Ns/Np = Us/Up auch an der Primärwicklung und muss zur Betriebsspannung addiert werden („Rücktransformation“). Wenn im vorliegenden Beispiel ü = 0,1 gewählt wird, steigt die Spannung am Transistor während der Ladezeit des Kondensators auf

Umax=300V+13V0,1=430V

Durchflusswandler

Beim Durchflusswandler findet keine Zwischenspeicherung der Energie im Eisenkern statt, sondern während der gesamten Einschaltphase des Transistors wird Energie an den Sekundärkreis übertragen. Der Eisenkern darf keinen Luftspalt besitzen, die Hysteresekurve soll schmal sein. Auch hier gilt - wie bei jedem Trafo - dass die induzierte Spannung pro Windung in allen Wicklungen gleich ist. Wenn z.B. im Zeitraum 0 bis t1 300 V an die Primärspule gelegt werden und gleichzeitig an der Sekundärspule 13 V erwartet werden, muss das Transformationsverhältnis ü = Ns/Np = Us/Up = 13 V/300 V = 0,043 betragen.

Wird der Transformator mit Rechteckspannung betrieben, ist ein Eisenkern fast zwingend erforderlich, denn ohne einen solchen würde man sehr viele Windungen für eine ausreichend große Induktivität L benötigen, und der ohmsche Widerstand der Spule wäre recht groß. Dadurch würde die Zeitkonstante L/R viel kleiner sein als im obigen Beispiel und auch die schnellsten Schalttransistoren würden zu langsam schalten.

Skin- und Proximity-Effekt

Der Skin-Effekt tritt vorwiegend bei hohen Frequenzen in Erscheinung. Er bewirkt, dass nur noch das Äußere des Leiters zum Stromfluss beiträgt. Der Skin-Effekt beruht auf der Abschirmungswirkung elektrisch leitfähiger Materialien gegenüber elektromagnetischen Feldern. Nach Küpfmüller, Mathis, Reibiger: Theoretische Elektrotechnik ist dieser Effekt nicht, wie häufig beschrieben, auf Wirbelströme zurückzuführen. Vielmehr handelt es sich um eine Felddiffusion in den Leiter, bei der die Eindringtiefe begrenzt ist und somit ein Eindringmaß definiert werden kann. Ein metallischer magnetisch neutraler Leiter wirkt für Hochfrequenzfelder (HF) wie ein magnetisch undurchlässiger Stoff mit der Permeabilität null. Der Skin-Effekt kann durch die Verwendung von speziellen Hochfrequenzlitzen verringert werden. Bei der HF-Litze wird ein Leiter durch die Parallelschaltung von gegeneinander elektrisch isolierte und miteinander verwobene Einzelleiter ersetzt.

Der Proximity-Effekt beruht auf der Wechselwirkung des Stromes mit den elektromagnetischen Feldern benachbarter Leiter. Insbesondere dann, wenn benachbarte Leiter entgegengesetzt gerichtete Ströme aufweisen, sorgt der Proximity-Effekt für eine verminderte effektive Querschnittsfläche des Leiters.

Betrieb mit einer Sinusspannung

Wird die Primärspule an eine sinusförmige Wechselspannung angeschlossen, werden die notwendigen Gleichungen komplizierter. Die Funktion eines Trafos kann (zu) einfach - und falsch! - so erklärt werden: Der durchfließende Wechselstrom Iprimär erzeugt im Inneren der Spule mit Nprimär Windungen und der Länge l folgende magnetische Flussdichte:

B=μrμ0NlI

wobei μ0 die Magnetische Feldkonstante und μr die Permeabilitätszahl sind. Dieses Magnetfeld ändert sich wie der Strom und induziert in der Sekundärspule eine Wechselspannung, die von der Windungszahl abhängt, wie weiter oben beschrieben.

Diese Erklärung hat einige Mängel: Sie berücksichtigt nicht, dass Trafos üblicherweise mit vorgegebener („eingeprägter“) Spannung, beispielsweise 230 V, betrieben werden und nicht mit vorgegebenem Strom I, den die Gleichung verlangt. Aus ihr folgt nicht, wieso bei tiefen Frequenzen ein Eisenkern erforderlich ist. Sie liefert weder einen Anhaltspunkt für den einfachen Zusammenhang Up/Us =  Np/Ns noch für experimentellen Befund, dass sich der Primärstrom bei unterschiedlicher Belastung auf der Sekundärseite stark und fast proportional ändert.

Diese belastungsabhängige Stromaufnahme liefert den Schlüssel für die korrekte Erklärung. Es muss einen Effekt geben, der dafür sorgt, dass der aufgenommene Strom immer geringer ist als der Maximalwert, der sich nach dem ohmschen Gesetz aus der angelegten Wechselspannung (230 V) und dem Widerstand der Primärspule eines zum Beispiel 100VA Trafos (etwa 5 Ω) ergibt. Im Leerlauf, also ohne sekundärseitige Belastung, kann der Primärstrom auf einige Prozent des Nennstromes von hier 0,43A sinken. Dieser Effekt wird durch die Selbstinduktion verursacht, er soll hier nicht im Detail diskutiert werden. Kurz zusammengefasst geschieht im eingeschwungenen Zustand, also nicht in den ersten Augenblicken nach dem Einschalten, folgendes:

  • Die angelegte Wechselspannung UNetz lässt in der Primärspule einen Wechselstrom fließen, der im Eisenkern ein magnetisches Wechselfeld erzeugt.
  • Dieses induziert in allen Spulen des Trafos, also auch in der Primärspule eine „Gegenspannung“ Uinduziert, die fast so groß ist wie die angelegte Wechselspannung und diese weitgehend kompensiert (Lenzsche Regel). Als „Antriebsspannung“ für den Primärstrom steht nur die Differenzspannung UNetz - Uinduziert zur Verfügung, die wenige Volt beträgt und am ohmschen Widerstand des Spulendrahtes abfällt. Deshalb ist der Primärstrom so gering.
  • Wäre die Gegenspannung zu gering, würde die Differenzspannung UNetz - Uinduziert sofort größer werden und höheren Primärstrom fließen lassen. Dadurch würde aber das Magnetfeld ansteigen und mehr Gegenspannung erzeugen. Dieses Verhalten nennt man dynamisches stabiles Gleichgewicht. Es sorgt in jedem Moment dafür, dass die induzierte Spannung "parallel" zur angelegten Wechselspannung mitläuft.

Das ist auch die Begründung für die Gleichung

UpUs=npns

zur Berechnung der Windungszahlenverhältnisses, um die Sekundärspannung Us zu erhalten. Wenn die „Gegenspannung“ Uinduziert in der Primärspule fast so groß ist wie die angelegte Wechselspannung Up, gilt das genauso für die induzierte Spannung Us in einem parallel mitgeführten Draht, der nun Sekundärspule genannt wird. Das ändert sich auch nicht, wenn die Drähte nicht exakt nebeneinander liegen, sie können sogar in merklicher Entfernung montiert werden, solange sie vom gleichen Magnetfeld durchflossen werden. Und wenn man die Windungszahl halbiert, erhält man auch nur die halbe Spannung. Mit der Gleichung

Up=NpdBdtA

aus dem vorhergehenden Absatz und der maximalen Flussdichte B = 1,7 T für kornorientiertes Dynamoblech kann man die induzierte Spannung pro Windung abschätzen. Da sich die Netzspannung in dt = 5 ms von Null bis zum Maximalwert Umax ändert, gilt für einen Eisenkern der Querschnittsfläche 10 cm² mit guter Näherung

Ueff=11,7T0,005s10cm2=0,34V

Das Ergebnis ist nicht ganz exakt, weil bei dieser Gleichung nicht die Sinusform der Netzspannung berücksichtigt ist. Die genaue Gleichung findet man hier.

Material

Die Verwendung eines Eisenkerns verringert zwar die Anzahl der notwendigen Windungen in beiden Spulen, bringt aber auch Nachteile mit: Der Eisenkern kann magnetisch gesättigt werden, dann wird die transformierte Wechselspannung verzerrt. Ferner entstehen Wirbelströme und Leistungsverluste. Je tiefer die zu übertragende Frequenz ist, desto zwingender ist aber die Verwendung von Eisen. Das wird am Beispiel eines 50 Hz-Trafos erläutert.

Netztrafo ohne Eisen

Der Eisen- oder Ferritkern im Trafo ist überflüssig, wenn

  1. der induktive Widerstand ZL = 2πf·L der Primärspule bei der Betriebsfrequenz f so hoch ist, dass ein akzeptabler, das heißt nur geringer Leerlaufstrom fließt und
  2. der ohmsche Widerstand der Spule so gering ist, dass auch bei Höchstlast des Trafos, also bei maximalem Primärstrom, dieser nicht überhitzt wird.

Bei Frequenzen über 1 MHz genügen meist weniger als 100 Windungen, um beide Forderungen zu erfüllen. Bei tiefer Frequenz treten unüberwindbare Probleme auf, wie folgendes Beispiel für einen Netztrafo von 100 W und bescheidener Qualität zeigt: Für einen Leerlaufstrom von 100 mA muss ZL = 2300 Ω und L = 7,3 H sein. Die erforderliche Windungszahl N der Primärspule kann man mit der Induktivität einer Zylinderspule und der Gleichung

L=N2μ0μrAl

abschätzen und erhält ohne Eisenkern etwa 31.000 Windungen mit einer Drahtlänge von 10 km und einem Maximalwiderstand von 40 Ω. Der notwendige Kupferdraht müsste einen Querschnitt von 4,3 mm² haben, der bei 31000 Windungen einen Wicklungsquerschnitt von 1300 cm² einnimmt. In diese Primärspule müsste eine etwa gleich massive Sekundärspule „eingewoben“ werden, um eine gute magnetische Kopplung zu erzielen. Insgesamt ergibt sich ein Gesamtvolumen von etwa einem Kubikmeter bei 9.000 kg Masse.

Netztrafo mit Eisen

Dieser ohne Eisenkern realisierbare Trafo lässt sich mit einem ausreichend großen Kern aus Blechen auf handliche Werte verkleinern. Wegen der sehr hohen Permeabilitätszahl µr von etwa 2000 genügen nun 700 Windungen für die Primärspule. An Stelle eines massiven Eisenkerns muss dünnes Trafoblech eingesetzt werden, um die Wirbelströme im Kern gering zu halten.

Wählt man für den 100 W-Trafo einen (zu) großen Eisenkern von 10 kg, gibt es kein Problem mit der Sättigungsmagnetisierung. Je kleiner und leichter aber der Eisenkern sein soll, desto weniger Weiss-Bezirke enthält er. Diese werden aber bereits bei geringeren Magnetfeldern komplett ausgerichtet - Sättigung ist erreicht. Das erzeugt eine Reihe von neuen Problemen: Verzerrungen der Sinusform des Leerlaufstromes, zusätzliche Wärme und massive Stromspitzen beim Einschalten.

Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Ausschnitt der Hysteresekurve mit unterschiedlichen Stromdifferenzen bei konstanter Φ-Änderung an einem großen Trafo

Der Reihe nach: Bei Induktion dreht sich alles um die Gleichung U = dΦ/dt mit dem „Magnetfluss“ Φ  = B·A. Bei jedem Trafo ist die Spulenfläche A konstant, deshalb muss das Magnetfeld B geändert werden. B wird von der Primärspule erzeugt, dafür gilt die Gleichung B = μr·μ0·H = μr·μ0·J·N/l. Vereint man diese Gleichungen und fasst dabei alle uninteressanten (konstanten) Faktoren in f zusammen, erhält man B = μr·f·J. Das sollte eine Gerade mit dem Steigungsfaktor μr sein, die immer weiter ansteigt. Im Experiment gilt das nur für kleine Ströme, bei großen Strömen biegt die Gerade nach rechts ab. μr ist leider nicht konstant, sondern wird mit steigendem Strom J immer kleiner, sinkt bis zum Wert 1. Im nebenstehenden Bild sieht man, dass man nicht immer den gleichen Stromzuwachs dJ benötigt, um den Magnetfluss Φ um den gleichen Betrag zu vergrößern. Genügt anfangs ein Stromzuwachs von 0,5 A für eine gewisse Flussänderung, benötigt man bei höherem Gesamtstrom bereits 3 A oder mehr, um die gleiche Flussänderung zu erzielen.

An dieser Stelle gibt es natürliche Grenzen: Jedes Stück Eisen besteht aus endlich vielen Atomen, die nur eine gewisse Anzahl Weiss-Bezirke bilden können. Deren Orientierung zeigt ohne externes Magnetfeld - statistisch verteilt - in alle Richtungen, das Eisen ist entmagnetisiert. Mit zunehmendem Strom durch die Primärspule werden immer noch mehr Bezirke parallel zur Spulenachse ausgerichtet und die Kurve steigt steil an. Wenn aber fast alle orientiert sind, hilft auch kein weiterer Stromanstieg, um noch mehr in diese Richtung zu zwingen, denn es sind ja keine mehr da. Der Magnetfluss kann kaum noch steigen, die Kurve wird flacher. Bei kornorientiertem Dynamoblech geht man bis zu Flussdichten B = 1,6…1,75 T; Sättigung tritt ein ab 2,03 Tesla.

Für den Primärstrom hat das katastrophale Folgen: Sobald die Hysteresekurve flach wird, kann Φ kaum noch ansteigen, die Änderung wird Null. Da deshalb die Gegenspannung Uinduziert auch verschwindet, steigt der Primärstrom auf extreme Werte beim Einschalten des Transformators bis die Sicherung abschaltet. Ein gesättigter Kern hat die gleiche Wirkung wie Luft, nämlich keine. Der Strom wird dann nur durch den ohmschen Widerstand der Primärspule begrenzt.

Der Magnetisierungsstrom

Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Verlauf des Magnetisierungsstromes bei unterschiedlichen Eisenkerngrößen, desselben Kerntyps bei gegebenem Magnetfluss

Der Querschnitt A des Eisenkerns ist ein Maß dafür, wie viele Weiss-Bezirke vom gegebenen Magnetfeld der Primärspule ausgerichtet werden können. Der Kern wird im Bild verkleinert oder vergrößert. Sind alle Weiss-Bezirke parallel zur Spulenachse orientiert (magnetische Sättigung), kann sich Φ nicht mehr ändern, die Selbstinduktion kann keine Gegenspannung mehr induzieren und der Strom durch die Primärspule steigt steil an (rote Kurve im Bild). Gleichzeitig strebt die Spannung in der Sekundärspule gegen Null - das ist unerwünscht! In diesem Moment wird besonders viel Energie aus dem Stromnetz entnommen und wenig an die Sekundärspule übertragen. Als Folge kann die Primärspule durchbrennen.

Übliche Gegenmittel: Entweder den Eisenkern vergrößern oder die Frequenz erhöhen oder beides oder mehr Windungen draufpacken. Wird die Frequenz verzehnfacht, dauert eine Schwingung nur noch 0,1·dt. Verringert man die Spulenfläche A ebenfalls um den Faktor 10 auf A1, entsteht die gleiche Induktionsspannung. Wenn aber die Eisenfläche auf 10 % verringert wird, schrumpfen bei Einhaltung der Proportionen alle Abmessungen und sowohl Volumen als auch Masse des Trafos verringern sich auf 3,2 % des ursprünglichen Wertes. Aus diesem Grund wurde für das Bordnetz von Flugzeugen die Frequenz 400 Hz gewählt. Umgekehrt benötigen Trafos für Bahnstrom bei der Frequenz 16,7 Hz die dreifache Eisenfläche und die 5,2-fache Masse im Vergleich zum Betrieb mit 50 Hz; die Frequenz ist hier durch die Umdrehungsgeschwindigkeit der Generatoren vorgegeben.

Streufluss

Linker Teil eines aufgeschnittenen Streufeldtrafos
Fehler beim Erstellen des Vorschaubildes: Datei fehlt
Streufluss eines Trafokerns

Bei einem idealen Transformator würden alle Linien des Magnetflusses, die von der Primärspule erzeugt werden, auch durch die Sekundärspule laufen. Bei einem realen Trafo schlagen einige Magnetfeldlinien andere Wege ein, insbesondere bei geringer Permeabilität des Magnetwerkstoffes und hoher Belastung „weichen“ sie der Sekundärwicklung aus. Das erzeugt unerwünschte Magnetfelder in der Umgebung, die in manchen Geräten wie Oszilloskopen sehr störend sein können und besondere technische Maßnahmen zur Abschirmung niederfrequenter Magnetfelder verlangen. Außerdem verringern sie den Wirkungsgrad des Trafos und sorgen dafür, dass die Gleichung Np/Ns=Up/Us nicht genau gilt. Abhilfe sind geringe Abstände zwischen Wicklung und Eisenkern sowie Vermeiden von räumlich getrennten Spulen.

Es gibt aber Einsatzbereiche, bei denen das Streufeld erwünscht ist, wie der Streufeldtransformatoren beim Schweißen oder als Vorschaltgeräte für Leuchtstoffröhren. In diesen Fällen werden gezielt Luftspalte eingebaut, wie im nebenstehenden Bild zu sehen ist. Der Streufeldtransformator vereint die Funktion eines Transformators (Spannungstransformation und galvanische Trennung) und einer strombegrenzenden Drossel in einem Bauteil.

Laminierte Blechpakete

Ein massiver Eisenkern würde in der Primärwicklung wie eine kurzgeschlossene Windung wirken, in der ein großer Strom induziert wird. Obwohl die Leitfähigkeit von Eisen nicht besonders gut ist, würde darin sehr viel Wärmeenergie entstehen. Das ist beim Induktionskochfeld und Induktionsofen erwünscht, muss aber beim Trafo vermieden werden. Aus diesem Grund wird der Kern eines Trafos aus dünnen, voneinander isolierten Dynamoblechen zusammengesetzt, damit die Fläche A quer zum Magnetfluss Φ gering wird. Die Heizleistung eines Blechstreifens berechnet sich nach der Formel

P=Uind2R

Wegen der geringen Dicke des Bleches bleiben Umfang und Widerstand R entlang des Umfanges etwa konstant. Der einzige Weg, die Verluste zu verringern, ist eine Reduktion der induzierten Spannung. Aus der Induktionsformel

Uind=AdBdt

folgt, dass der Querschnitt A klein werden muss. Eine Halbierung der Blechdicke bei sonst unveränderten Bedingungen verringert die Heizleistung P auf 25 %.

Bei hoher Frequenz wird die Zeit dt für eine Schwingung immer kleiner. Verdoppelt man die Betriebsfrequenz des Trafos bei unverändertem Blechquerschnitt A, verdoppelt sich auch Uind und die Heizleistung steigt um den Faktor vier. Dieser enorme Anstieg lässt sich nur durch dünneres Blech kompensieren. Kerne von NF-Trafos, wie sie beispielsweise in Röhrenverstärkern benötigt werden, sind deshalb immer aus besonders dünnen Eisen-„Folien“ aufgebaut. Das reicht bei noch höheren Frequenzen nicht aus, dort geht man zu Ferritkernen oder Ringkernen aus gepresstem Eisenpulver über. Dadurch wird zwar die Querschnittsfläche A jedes Kristallits sehr klein, der gegenseitige Abstand verkleinert aber auch den Maximalwert von B.

Widerstandstransformation

Bei Leistungsanpassung muss der Belastungswiderstand den gleichen Wert haben wie der Innenwiderstand der Stromquelle. Bei unterschiedlichen Werten kann - bei Wechselstrom - ein Transformator zur Widerstandsanpassung verwendet werden. Zur Herleitung des Zusammenhangs multipliziert man die beiden linken Seiten und die rechten Seiten der Formeln

UpUs=NpNsundIsIp=NpNs

und erhält

UpUsIsIp=(NpNs)2

Zusammen mit dem ohmschen Gesetz R = U/I folgt daraus

RpRs=(NpNs)2

Durch ein Windungszahlverhältnis von 1:2 wird eine Widerstandstransformation von 1:4 erreicht. Beispiele:

  • Die sehr geringe Spannung eines Bändchenmikrofons mit dem Innenwiderstand von nur 0,2 Ω muss auf 180 Ω angehoben werden, damit das Signal störungsarm übertragen werden kann. Aus dem Widerstandsverhältnis 900 folgt ein Übersetzungsverhältnis von 30 für den Trafo. Dadurch wird auch die induzierte Spannung des Mikrofons um den Faktor 30 heraufgesetzt.
  • Ein Lautsprecher mit R = 4 Ω soll an eine Röhrenendstufe der Impedanz von 2000 Ω angepasst werden. Dann muss der Trafo ein Übersetzungsverhältnis von
a=20004=22

haben. Die Verwendung eines Trafos hat den erwünschten Nebeneffekt, dass durch den Lautsprecher kein Gleichstrom fließen kann.

Einzelnachweise


Weblinks

Andere Lexika

  • Dieser Artikel wurde in der Wikipedia gelöscht.



  • Löschdiskussion
  • Autoren: Ben-Oni, Aka, Herbertweidner, emeko, Schlurcher, Wdwd, Frank Murmann, Cepheiden, Hydrauliker, Jens Liebenau, Mr.checker, Ot, Avoided, Staro1, Bücherwürmlein, Pittimann, NebMaatRe, KatBot, Reseka, Der ohne Benutzername, Pyxlyst , Dealerofsalvation, Neon02