PlusPedia wird derzeit technisch modernisiert. Aktuell laufen Wartungsarbeiten. Für etwaige Unannehmlichkeiten bitten wir um Entschuldigung; es sind aber alle Artikel zugänglich und Sie können PlusPedia genauso nutzen wie immer.

Neue User bitte dringend diese Hinweise lesen:

Anmeldung - E-Mail-Adresse Neue Benutzer benötigen ab sofort eine gültige Email-Adresse. Wenn keine Email ankommt, meldet Euch bitte unter NewU25@PlusPedia.de.

Hinweis zur Passwortsicherheit:
Bitte nutzen Sie Ihr PlusPedia-Passwort nur bei PlusPedia.
Wenn Sie Ihr PlusPedia-Passwort andernorts nutzen, ändern Sie es bitte DORT bis unsere Modernisierung abgeschlossen ist.
Überall wo es sensibel, sollte man generell immer unterschiedliche Passworte verwenden! Das gilt hier und im gesamten Internet.
Aus Gründen der Sicherheit (PlusPedia hatte bis 24.07.2025 kein SSL | https://)

Bei PlusPedia sind Sie sicher: – Wir verarbeiten keine personenbezogenen Daten, erlauben umfassend anonyme Mitarbeit und erfüllen die Datenschutz-Grundverordnung (DSGVO) vollumfänglich. Es haftet der Vorsitzende des Trägervereins.

PlusPedia blüht wieder auf als freundliches deutsches Lexikon.
Wir haben auf die neue Version 1.43.3 aktualisiert.
Wir haben SSL aktiviert.
Hier geht es zu den aktuellen Aktuelle Ereignissen

Zahlensystem

Aus PlusPedia
Version vom 17. Februar 2021, 12:24 Uhr von Markus Deing (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „Ein '''Zahlensystem''' (seltener auch '''Zahlsystem''' genannt) ist ein System zur Darstellung von Zahlen. Das Darstellungsformat ist n…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Ein Zahlensystem (seltener auch Zahlsystem genannt) ist ein System zur Darstellung von Zahlen. Das Darstellungsformat ist nicht zwingend festgelegt, viele Zahlensysteme sind in einer Zahlschrift oder Zahlworten realisiert. Eine Zahl wird dabei nach syntaktischen Regeln als Folge von Zahlzeichen, auch Ziffern genannt, dargestellt. Die moderne Forschung unterscheidet zwischen additiven, hybriden und positionellen (Stellenwert-) Zahlensystemen.

Additionssysteme

In einem Additionssystem wird eine Zahl als Summe der Werte ihrer Ziffern dargestellt. Dabei spielt die Position der einzelnen Ziffern keine Rolle.

Ein Beispiel ist das Strichsystem (Unärsystem), das sich anbietet, wenn etwas schriftlich mitgezählt werden soll (wie zum Beispiel die Getränke auf einem Bierdeckel). Hierbei wird die Zahl n durch n Striche dargestellt. Dies ist vermutlich eines der ältesten Zählsysteme überhaupt. Das Unärsystem wird bei der Darstellung größerer Zahlen sehr schnell unübersichtlich. Deshalb ist es meist üblich, die Zahlen in Blöcke zusammenzufassen, indem man etwa jeden fünften Strich quer über die vier vorangegangenen Einzelstriche legt. Obwohl es aus diesem Grund nicht geeignet ist, große Zahlen darzustellen, wird es im Alltag dennoch in manchen Situationen verwendet. Eine Addition um einen Zahlenwert ist einfach durch das Hinzufügen eines Striches möglich. Herkömmliche Systeme lassen eine so einfache und schnelle Erweiterung im Allgemeinen nicht zu.

Hybridsysteme

Hierbei wird eine Grundziffer einem Zeichen vorangestellt, das eine Potenz der Basis wiedergibt; die Werte beider werden miteinander multipliziert. In den europäischen Zahlensystemen kamen solche Hybridsysteme so gut wie nicht vor, wohl aber, schon seit Beginn des zweiten Jahrtausends v. Chr., in Mesopotamien, später auch in China und im Nahen Osten allgemein. Sowohl aus Äthiopien als auch aus Südindien und Sri Lanka sowie der Maya-Kultur sind solche hybriden Zahlensysteme bekannt.

Beispiele im japanisch-chinesischen Zahlensystem:

    23:  二十三  (2 × 10 + 3)
30.000:  三万    (3 × 10.000)

Stellenwertsysteme

Aufbau

Im Alltag und in der Wissenschaft wird eine Zahl üblicherweise durch Ziffern (0, 1, 2, …, 9, die allein die ersten zehn der natürlichen Zahlen darstellen, und Buchstaben) und weitere Zahlenzeichen wie Vorzeichen (plus, minus) und Trennzeichen (Komma, Leerzeichen) dargestellt. Die Anzahl der verwendeten Ziffern wird „Basis des Stellenwertsystems“ genannt. Die gängigsten Basen sind 2 (beim Dualsystem), 8 (beim Oktalsystem), 10 (beim im Alltag gebrauchten Dezimalsystem) oder 16 (beim in der Datenverarbeitung wichtigen Hexadezimalsystem).

Die Ziffern haben eine durch Konvention festgelegte Reihenfolge ihres Wertes. Beim Hochzählen (das entspricht der Addition einer Eins) wird in dieser Reihenfolge zur nächsten Ziffer übergegangen. Bei der Addition einer Eins auf die höchstwertigste Ziffer wird auf die niederwertigste Ziffer übergegangen, und auf der nächsthöheren Stelle wird eine Eins addiert.

Dazu werden die Ziffern je nach ihrer Stelle unterschiedlich bewertet, wobei der Stellenwert eine Potenz der Basis ist (zum Beispiel „Einerstelle“, „Zehnerstelle“, „Hunderterstelle“, …). Die Stelle mit der niedrigsten Bewertung steht dabei ganz rechts. Die Berechnung des Zahlenwertes erfolgt dann durch Multiplikation der einzelnen Ziffernwerte mit den zugehörigen Stellenwerten und der Addition dieser Produkte.[1]

Auf diese Weise lässt sich in einem Stellenwertsystem jede natürliche Zahl darstellen. Für die Erweiterung auf negative Zahlen wird ein Vorzeichen links vor die Ziffernfolge gesetzt, mit dem angegeben wird, ob eine Zahl positiv oder negativ ist. Durch die Verwendung negativer Exponenten lassen sich in einem Stellenwertsystem auch rationale Zahlen schreiben, wobei der Übergang von nichtnegativen zu negativen Exponenten durch ein Trennzeichen in der Zahldarstellung markiert wird, beispielsweise ein Komma oder einen Punkt.

Darstellungsbereich

Die Menge der darstellbaren Zahlen lässt sich bei einer unbeschränkten Anzahl von Stellen an einer Zahlengeraden veranschaulichen. Steht nur eine beschränkte Anzahl von Stellen zur Verfügung, wird das an einem Zahlenkreis veranschaulicht. Bei dieser Beschränkung kann eine Addition oder Subtraktion von Zahlen aus dem Bereich der darstellbaren Zahlen herausführen.

Literatur

  •  Georges Ifrah: Universalgeschichte der Zahlen. 2. Auflage. Campus-Verlag, Frankfurt/Main 1987, ISBN 3-593-33666-9.
  •  John D. Barrow: Warum die Welt mathematisch ist. Campus-Verlag, Frankfurt/Main 1993, ISBN 3-593-34956-6.
  • Guido Walz (Hrsg.): Lexikon der Mathematik. Band 5: Sed bis Zyl. 2. Auflage. Springer, Mannheim 2017, S. 442 f. (Zahlsystem).

Weblinks

Fehler beim Erstellen des Vorschaubildes: Datei fehlt Commons: Numeral systems – Sammlung von Bildern, Videos und Audiodateien
Fehler beim Erstellen des Vorschaubildes: Datei fehlt [[wikt:Skriptfehler: Ein solches Modul „WLink“ ist nicht vorhanden.|Wiktionary: Skriptfehler: Ein solches Modul „WLink“ ist nicht vorhanden.]] – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

  1. Axel Böttcher, Franz Kneißl: Informatik für Ingenieure: Grundlagen und Programmierung in C. Oldenbourg 2012.

Andere Lexika